Forecasting High-Frequency River Level Series Using Double Switching Regression with ARMA Errors
Ana C. Cebrián () and
Ricardo Salillas
Additional contact information
Ana C. Cebrián: University of Zaragoza
Ricardo Salillas: Instituto Tecnológico de Aragón (ITA)
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2021, vol. 35, issue 1, No 16, 299-313
Abstract:
Abstract River level forecasting is a difficult problem. Complex river dynamics lead to level series with strong time-varying serial correlation and nonlinear relations with influential factors. The current high-frequency level series present a new challenge: they are measured hourly or at finer time scales, but predictions of up to several days ahead are still needed. In this framework, prediction models must be able to provide h-step predictions for high h values. This work presents a new nonlinear model, double switching regression with ARMA errors, that addresses the features of level series. It distinguishes different regimes both in the regression and in the error terms of the model to capture time-varying correlations and nonlinear relations between response and predictors. The use of different regression and ARMA regimes will provide good h-step prediction for both low and high h values. We also propose a new estimation method that, in contrast to other switching models, does not need to define the regimes before estimating the model. This method is based on a two-step estimation and model-based recursive partitioning. The approach is applied to model the hourly levels of the Ebro River in Zaragoza (Spain), using as input an upstream location, Tudela. Using the fitted model, we obtain hourly predictions and confidence intervals up to three days ahead, with very good results. The model outperforms previous approaches, especially with high values and in cases of long-term predictions.
Keywords: River level forecast; ARMA errors; Switching regimes; Regression trees; Ebro River (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-020-02733-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:35:y:2021:i:1:d:10.1007_s11269-020-02733-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-020-02733-y
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().