EconPapers    
Economics at your fingertips  
 

Contrasting Uncertainties in Estimating Floods and Low Flow Extremes

Hadush Meresa and Yongqiang Zhang ()
Additional contact information
Hadush Meresa: Chinese Academy of Sciences
Yongqiang Zhang: Chinese Academy of Sciences

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2021, vol. 35, issue 6, No 7, 1775-1795

Abstract: Abstract Evaluation of possible sources of uncertainty and their influence on water resource planning and extreme hydrological characteristics are very important for extreme risk reduction and management. The main objective is to identify and holistically address the uncertainty propagation from the input data to the frequency of hydrological extremes. This novel uncertainty estimation framework has four stages that comprise hydrological models, hydrological parameter sets, and frequency distribution types. The influence of uncertainty on the simulated flow is not uniform across all the selected eight catchments due to different flow regimes and runoff generation mechanisms. The result shows that uncertainty in peak flow frequency simulation mainly comes from the input data quality. Whereas, in the low flow frequency, the main contributor to the total uncertainty is model parameterization. The total uncertainty in the estimation of QT90 (extreme peak flow quantile at 90-year return period) quantile shows the interaction of input data and extreme frequency models has significant influence. In contrast, the hydrological models and hydrological parameters have a substantial impact on the QT10 (extreme low flow quantile at 10-year return period) estimation. This implies that the four factors and their interactions may cause significant risk in water resource management and flood and drought risk management. Therefore, neglecting these factors in disaster risk management, water resource planning, and evaluation of environmental impact assessment is not feasible and may lead to significant impact.

Keywords: Uncertainty; Hydrological models; Parameters; Extremes; Frequency (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-021-02809-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:35:y:2021:i:6:d:10.1007_s11269-021-02809-3

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-021-02809-3

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:35:y:2021:i:6:d:10.1007_s11269-021-02809-3