An Ensemble Modeling Approach to Forecast Daily Reservoir Inflow Using Bidirectional Long- and Short-Term Memory (Bi-LSTM), Variational Mode Decomposition (VMD), and Energy Entropy Method
Fugang Li (),
Guangwen Ma (),
Shijun Chen and
Weibin Huang
Additional contact information
Fugang Li: Sichuan University
Guangwen Ma: Sichuan University
Shijun Chen: Sichuan University
Weibin Huang: Sichuan University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2021, vol. 35, issue 9, No 15, 2963 pages
Abstract:
Abstract Daily inflow forecasts provide important decision support for the operations and management of reservoirs. Accurate and reliable forecasting plays an important role in the optimal management of water resources. Numerous studies have shown that decomposition integration models have good prediction capacity. Considering the nonlinearity and unsteady state of daily incoming flow data, a hybrid model of adaptive variational mode decomposition (VMD) and bidirectional long- and short-term memory (Bi-LSTM) based on energy entropy was developed for daily inflow forecast. The model was analyzed using the mean absolute error (MAE), the root means square error (RMSE), Nash–Sutcliffe efficiency coefficient (NSE), and correlation coefficient (r). A historical daily inflow series of the Baozhusi Hydropower Station, China, is investigated by the proposed VMD-BiLSTM with hybrid models. For comparison, BP, GRNN, ELMAN, SVR, LSTM, Bi-LSTM, EMD-LSTM, and VMD-LSTM, were adopted and analyzed for evaluation and analyzed. We found that the proposed model, with MAE = 38.965, RMSE = 64.783, and NSE = 95.7%, was superior to the other models. Therefore, the hybrid model is robust and efficient for forecasting highly nonstationary and nonlinear streamflow. It can be used as the preferred data-driven tool to predict the daily inflow flow, which can ensure the safe operation of hydropower stations in reservoirs. As an interdisciplinary field spanning both machine learning and hydrology, daily inflow forecasting can become an important breakthrough in the application of deep learning to hydrology.
Keywords: Daily inflow forecasting; Deep learning; Energy entropy; Variational mode decomposition; K-mean; Bi-directional long- and short-term memory (Bi-LSTM) (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-021-02879-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:35:y:2021:i:9:d:10.1007_s11269-021-02879-3
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-021-02879-3
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().