Influence of Time Step Synchronization on Urban Rainfall-Runoff Simulation in a Hybrid CPU/GPU 1D-2D Coupled Model
Donglai Li,
Jingming Hou (),
Yangwei Zhang,
Minpeng Guo and
Dawei Zhang
Additional contact information
Donglai Li: Xi’an University of Technology
Jingming Hou: Xi’an University of Technology
Yangwei Zhang: Technische Universität Berlin
Minpeng Guo: Xi’an University of Technology
Dawei Zhang: China Institute of Water Resources and Hydropower Research
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2022, vol. 36, issue 10, No 2, 3417-3433
Abstract:
Abstract The 1D sewer - 2D surface coupled hydrodynamic model has increasingly become an essential tool for simulating and predicting the flood process and is widely used in the study of urban rainfall-runoff simulation. The current method of using the smaller time step of the sub model in the coupled model as the synchronization time greatly limits the computational efficiency, especially in the case of the large data amount or models executed in different platforms and in various types of codes. To evaluate the impact of time synchronization on the rainfall-runoff process in a coupled hydrodynamic model, a new model that couples the 2D GPU accelerated shallow water model and the 1D SWMM is applied to two urban catchments to simulate the rainfall-runoff-drainage processes, the fixed time step (5 s, 10 s, 30 s, 60 s, 120 s, 180 s and 300 s) is adopted to ensure the calculation efficiency and precision of the model. The results show that the time computational efficiency can be improved by 7.27%–27.37% in different scenarios compared with the method applying 2D model time step as the synchronization time; the surface runoff process is hardly affected as the synchronization time changes; and the relative error of the drainage process is less than 2.5% when the synchronization time is less than 60 s. Therefore, the fixed synchronization time method is recommended in the 1D-2D coupled model to improve the computational efficiency for flood and inundation simulation. Based on the advantage that the fixed synchronization time is easy to realize in the programming of the model and the high efficiency of the fixed synchronization time method concluded above, this work is expected to provide a reference for model coupling applications.
Keywords: Fixed synchronization time; GPU; 1D-2D coupled model; Rainfall runoff simulation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-022-03158-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:36:y:2022:i:10:d:10.1007_s11269-022-03158-5
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-022-03158-5
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().