Development of a Non-stationary Standardized Precipitation Evapotranspiration Index (NSPEI) for Drought Monitoring in a Changing Climate
Javad Bazrafshan (),
Majid Cheraghalizadeh () and
Kokab Shahgholian ()
Additional contact information
Javad Bazrafshan: University of Tehran
Majid Cheraghalizadeh: University of Tehran
Kokab Shahgholian: University of Tehran
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2022, vol. 36, issue 10, No 7, 3523-3543
Abstract:
Abstract In a changing climate, drought indices as well as drought definitions need to be revisited because some statistical properties, such as the long-term mean, of climate series may change over time. This study aims to develop a Non-stationary Standardized Precipitation Evapotranspiration Index (NSPEI) for reliable and robust quantification of drought characteristics in a changing climate. The proposed indicator is based on a non-stationary log-logistic probability distribution, assuming the location parameter of the distribution is a multivariable function of time and climate indices, as covariates. The optimal non-stationary model was obtained using a forward selection method in the framework of the Generalized Additive Models in Location, Scale, and Shape (GAMLSS) algorithm. The Non-stationary and Stationary forms of SPEI (i.e., NSPEI and SSPEI) were calculated using the monthly precipitation and temperature data of 32 weather stations in Iran for the common period of 1964–2014. The results showed that almost at all the stations studied, the non-stationary log-logistic distributions outperformed the stationary ones. The AICs of the non-stationary models for 97% of the stations were lower than those of the stationary models. The non-stationary models at 90% of the stations were statistically significant at the 5% significance level. While SSPEI identified the long-term and continuous drought and wet events, NSPEI revealed the short-term and frequent drought/wet periods at almost all the stations of interest. Finally, it was revealed that NSPEI, compared to SSPEI, was a more reliable and robust indicator of drought duration and drought termination in vegetation cover during the severest drought period (the 2008 drought). Therefore, it was suggested as a suitable drought index to quantify drought impacts on vegetation cover in Iran.
Keywords: Drought; Non-stationary; SPEI; NSPEI; GAMLSS; Iran (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-022-03209-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:36:y:2022:i:10:d:10.1007_s11269-022-03209-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-022-03209-x
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().