Groundwater Level Fluctuations in Coastal Aquifer: Using Artificial Neural Networks to Predict the Impacts of Climatical CMIP6 Scenarios
Adib Roshani and
Mehdi Hamidi ()
Additional contact information
Adib Roshani: Babol Noshirvani University of Technology
Mehdi Hamidi: Babol Noshirvani University of Technology
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2022, vol. 36, issue 11, No 4, 4001 pages
Abstract:
Abstract Groundwater resources play a crucial role in supplying water for domestic, industrial, and agricultural use. In this study ACCESS-CM2, HadGEM3-GC31-LL, and NESM3 were selected for validation from Coupled Model Intercomparison Project Phase 6 (CMIP6). In the following, the feedforward neural network was employed to predict monthly groundwater level (GWL) based on the emission scenarios of the sixth IPCC report (SSP2-4.5 and SSp5-8.5) for the next two decades (2021–2040) in the Sari-Neka coastal aquifer near the Caspian Sea, Iran. In this regard, the monthly maximum and minimum temperature, precipitation, and water table of previous month from four piezometers from 2000 to 2019 were used as input variables to forecast GWL. The evaluation of the three GCM models demonstrated that the ACCESS-CM2 provided the best values of the R2 and RMSE with observation parameters. The results of r, R2, RMSE, and MAE were evaluated for the model and indicated good performance of the model. The results also illustrated that under such mentioned scenarios, the mean monthly temperature would rise approximately from 0.1–1.2 °C. In addition, the mean monthly precipitation is likely to witness changes from -10% to 78% in the next two decades. As a result, this seems to lead to improvement and recharge of groundwater level for the near future. The results can help managers and policymakers to identify adaptation strategies more precisely for basins with similar climates.
Keywords: CMIP6; Groundwater level; Artificial neural network; LARS-WG; Sari-Neka (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-022-03204-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:36:y:2022:i:11:d:10.1007_s11269-022-03204-2
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-022-03204-2
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().