EconPapers    
Economics at your fingertips  
 

Monthly rainfall forecasting by a hybrid neural network of discrete wavelet transformation and deep learning

Ming Wei and Xue-yi You ()
Additional contact information
Ming Wei: Tianjin University
Xue-yi You: Tianjin University

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2022, vol. 36, issue 11, No 5, 4003-4018

Abstract: Abstract Rainfall forecast is critical to the management and allocation of water resources. Deep learning is used to predict rainfall time series with high temporal and spatial variability. Discrete wavelet transform (DWT), long-short term memory (LSTM) and dilated causal convolutional neural network (DCCNN) is integrated to build a hybrid model (DWT-CLSTM-DCCNN). Two methods of sample construction are used to train DWT-CLSTM-DCCNN and their effects on the model performance are analyzed. LSTM and DCCNN are built as benchmark models. The forecasting performance of DWT-CLSTM-DCCNN on monthly rainfall data from four major cities in China is evaluated. The results of DWT-CLSTM-DCCNN are compared with those of benchmark models in terms of the mean absolute error (MAE), root mean squared error (RMSE) and Nash-Sutcliffe efficiency (NSE) as well as the forecasting curves. The results show that DWT-CLSTM-DCCNN outperforms the benchmark models in model accuracy and peak and mutational rainfall capture.

Keywords: Monthly rainfall forecasting; Discrete wavelet transform; Long-short term memory; Dilated causal convolution (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-022-03218-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:36:y:2022:i:11:d:10.1007_s11269-022-03218-w

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-022-03218-w

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:36:y:2022:i:11:d:10.1007_s11269-022-03218-w