Dam-Break Flow on Mobile Bed Through an Idealized City: Numerical Study
Alibek Issakhov (),
Aliya Borsikbayeva and
Assylbek Issakhov
Additional contact information
Alibek Issakhov: Al-Farabi Kazakh National University
Aliya Borsikbayeva: Al-Farabi Kazakh National University
Assylbek Issakhov: Kazakh British Technical University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2022, vol. 36, issue 11, No 26, 4425-4446
Abstract:
Abstract This paper presents a numerical simulation of a three-phase flow (water, air, and mud) formed during a dam break. For the connection between all phases, the mathematical model was modified to take into account the non-Newtonian and Newtonian fluids. The equations in the mathematical model are discretized by the finite volume method and the relationship between all phases is achieved using the volume of fluid (VOF) method. Modified Navier–Stokes equations for accounting for non-Newtonian and Newtonian fluids are solved by the Pressure-Implicit with Splitting of Operators (PISO) numerical algorithm. To validate the mathematical model and numerical algorithm, the paper demonstrates a comparative analysis of the results with the laboratory experiment. The model tested in this way has confirmed its reliability, accuracy and reasonableness. Additionally, a three-dimensional numerical simulation of the water flow movement in combination with a sedimentary layer in a narrowing channel was considered. A rough estimate of the mud flow behavior in relation to the urbanized area located at the end of the channel is given. When analyzing the numerical results, it can be concluded that an increase in the height of the mud layer leads to a deceleration of the moving flow, which can subsequently be used for the timely evacuation of the population. It should be noticed that the analysis of the comparative graphs showed the deceleration of the water flow by more than 0.2 s for a moving layer depth of 0.025 m and when using a mixed arrangement of the sediment. And also from the obtained results, we can note at least two times decrease in the maximum pressure value that in the presence of sediments.
Keywords: Flood zones; VOF method; Modified Navier–Stokes equation; Idealized city (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-022-03253-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:36:y:2022:i:11:d:10.1007_s11269-022-03253-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-022-03253-7
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().