EconPapers    
Economics at your fingertips  
 

Reliability-based Operation of Reservoirs Using Combined Monte Carlo Simulation Model and a Novel Nature-inspired Algorithm

Abolfazl Baniasadi Moghadam (), Hossein Ebrahimi (), Abbas Khashei Siuki () and Abolfazl Akbarpour ()
Additional contact information
Abolfazl Baniasadi Moghadam: Kish International Branch, Islamic Azad University
Hossein Ebrahimi: Islamic Azad University
Abbas Khashei Siuki: University of Birjand
Abolfazl Akbarpour: University of Birjand

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2022, vol. 36, issue 12, No 1, 4447-4468

Abstract: Abstract One of the critical issues in surface water resources management is the optimal operation of dam reservoirs. In recent decades, meta-heuristics algorithms have gained attention as a powerful tool for finding the optimal program for the dam reservoir operation. Increasing demand due to population growth and lack of precipitation for reasons such as climate change has caused uncertainties in the affecting parameters on the planning of reservoirs, which invalidates the operational plans of these reservoirs. In this study, a novel optimization algorithm with the combination of genetic algorithm (GA) and multi-verse optimizer (MVO) called multi-verse genetic algorithm (MVGA) has been developed to solve the optimal dam reservoir operation issue under influence of the joint uncertainties of inflow, evaporation and demand. After validating the performance of MVGA by solving several benchmark functions, MVGA was used to find the optimal operation program of the Amirkabir Dam reservoir in 132 months, in both deterministic and probabilistic states. Minimizing the deficit between downstream demand and release from the reservoir during the operation period was considered as the objective function. Also, the limitations of the reservoir continuity equation, storage volume, and reservoir release equation were applied to the objective function. For modeling the effect of uncertainty, Monte Carlo simulation (MCS) is coupled to MVGA. The results of model implementations showed that the MVGA-MCS model with the best value of the objective function equal to 26 in the 1st rank and MVGA, MVO, and GA, with 15%, 34%, and 46% increase in the value of the objective function compared to the MVGA-MCS stood in the second to fourth ranks, respectively. Also, the results of the resiliency, and vulnerability indices of the reservoir operation showed that MVGA-MCS and MVGA models have better performance than other models.

Keywords: Reservoir operation management; Multi-verse optimizer; Genetic algorithm; Monte Carlo simulation; Reliability-based design optimization (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11269-022-03163-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:36:y:2022:i:12:d:10.1007_s11269-022-03163-8

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-022-03163-8

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:36:y:2022:i:12:d:10.1007_s11269-022-03163-8