Improving Annual Streamflow Prediction by Extracting Information from High-frequency Components of Streamflow
Lili Wang (),
Yanlong Guo and
Manhong Fan
Additional contact information
Lili Wang: College of Physics and Electronic Engineering, Northwest Normal University
Yanlong Guo: Chinese Academy of Sciences
Manhong Fan: College of Physics and Electronic Engineering, Northwest Normal University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2022, vol. 36, issue 12, No 6, 4535-4555
Abstract:
Abstract Annual streamflow prediction is of great significance to the sustainable utilization of water resources, and predicting it accurately is challenging due to changes in streamflow have strong nonlinearity and uncertainty. To improve the prediction accuracy of annual streamflow, this study proposes a new hybrid prediction model based on extracting information from high-frequency components of streamflow. In the proposed model, the original streamflow data is decomposed by ensemble empirical mode decomposition (EEMD) into several intrinsic mode functions (IMFs) with different frequencies. Then, the dominant component and residual component are identified from the high-frequency components IMF1 and IMF2 using singular spectrum analysis (SSA), and the residual components are accumulated as a new component. Finally, all the components, including the new component that is not noise, are modelled by support vector machine (SVM), and the SVM is optimized by grey wolf optimizer (GWO). To analyse and verify the proposed model, the annual streamflow data are collected from the Liyuan River and Taolai River in the Heihe River Basin, and six models, autoregressive integrated moving average (ARIMA), cross validation (CV)-SVM, GWO-SVM, EEMD-ARIMA, EEMD-GWO-SVM and modified EEMD-GWO-SVM are considered as comparison models. The results indicate that the prediction performance of the proposed model is obviously better than that of other reference models, and extracting valuable information from high-frequency components can effectively improve annual streamflow prediction. Thus, the high-frequency components contained in the original streamflow series have an important impact on obtaining accurate streamflow prediction, and the proposed model makes full use of the high-frequency components and provides a reliable method for streamflow prediction.
Keywords: Annual streamflow prediction; Support vector machine; Ensemble empirical mode decomposition; Singular spectrum analysis; Grey wolf optimizer; High-frequency component (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-022-03262-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:36:y:2022:i:12:d:10.1007_s11269-022-03262-6
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-022-03262-6
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().