The Hysteresis Response of Groundwater to Reservoir Water Level Changes in a Plain Reservoir Area
Yong Huang (),
Kehan Miao (),
Xiaoguang Liu and
Yin Jiang ()
Additional contact information
Yong Huang: Hohai University
Kehan Miao: Hohai University
Xiaoguang Liu: Water Resources Pearl River Planning, Surveying and Designing Co. Ltd (PRPSDC)
Yin Jiang: Hohai University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2022, vol. 36, issue 12, No 16, 4739-4763
Abstract:
Abstract Reservoir immersion will lead to some environmental geological problems, such as soil swamping or salinization, reduction of building foundation strength, or even overall instability. Reservoir scope of immersion is closely related to changes in groundwater levels. According to the geological and hydrogeological conditions pertaining in the Jiangxiang reservoir area, the analytical method is employed to calculate the change in groundwater levels in an unconfined aquifer when the reservoir water level rises rapidly to a constant value and changes periodically. Combined with the related functions of MATLAB™ software, the lag and immersion times are determined in different locations around the reservoir. The results show that the change of the groundwater level exhibits hysteresis relative to that of the reservoir water level owing to the low permeability of silty loam and clay. The closer to the reservoir, the faster the groundwater level rises or falls. In the Guo Xiaoxu section, when the reservoir water level rises rapidly to 42.5 m, the groundwater level near the reservoir remains lower than the reservoir water level after 50 years. If the hydraulic conductivity is increased by three orders of magnitude, the groundwater level and the reservoir water level changes are positively correlated, and the hysteresis is not obvious. In the crop areas, the scope of immersion in the Guoxiaowei section is 31 m with the immersion elevation of 43.23 m, and the corresponding immersion time is 15,766 d. In residential areas, the scope of immersion of the Qigang section is 308 m with the immersion elevation of 46.78 m, and the corresponding immersion time is 16,354 d. The calculated scope of immersion and time at different locations provide a scientific basis for the design of the reservoir water level and the range of demolition affecting local residents.
Keywords: Plain reservoir; Groundwater hysteresis; Lag time; Scope and time of immersion; Groundwater/surface-water interaction (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-022-03275-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:36:y:2022:i:12:d:10.1007_s11269-022-03275-1
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-022-03275-1
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().