EconPapers    
Economics at your fingertips  
 

Ensemble CNN Model for Effective Pipe Burst Detection in Water Distribution Systems

Sehyeong Kim, Sanghoon Jun and Donghwi Jung ()
Additional contact information
Sehyeong Kim: Korea University
Sanghoon Jun: The University of Arizona
Donghwi Jung: Korea University

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2022, vol. 36, issue 13, No 11, 5049-5061

Abstract: Abstract Various data-driven anomaly detection methods have been developed for identifying pipe burst events in water distribution systems (WDSs); however, their detection effectiveness varies based on network characteristics (e.g., size and topology) and the magnitude or location of bursts. This study proposes an ensemble convolutional neural network (CNN) model that employs several burst detection tools with different detection mechanisms. The model converts the detection results produced by six different statistical process control (SPC) methods into a single compromise indicator and derives reliable final detection decisions using a CNN. A total of thirty-six binary detection results (i.e., detected or not) for a single event were transformed into a six-by-six grayscale heatmap by considering multiple parameter combinations for each SPC method. Three different heatmap configuration layouts were considered for identifying the best layout that provides higher CNN classification accuracy. The proposed ensemble CNN pipe burst detection approach was applied to a network in Austin, TX and improved the detection probability approximately 2% higher than that of the best SPC method. Results presented in this paper indicate that the proposed ensemble model is more effective than traditional detection tools for WDS burst detection. These results suggest that the ensemble model can be effectively applied to many detection problems with primary binary results in WDSs and pipe burst events.

Keywords: Convolutional neural network; Ensemble; Pipe burst detection; Statistical process control methods; Water distribution system (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-022-03291-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:36:y:2022:i:13:d:10.1007_s11269-022-03291-1

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-022-03291-1

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:36:y:2022:i:13:d:10.1007_s11269-022-03291-1