Forecasting Hourly Intermittent Rainfall by Deep Belief Networks with Simple Exponential Smoothing
Guo-Yu Huang,
Chi-Ju Lai and
Ping-Feng Pai ()
Additional contact information
Guo-Yu Huang: National Chi Nan University
Chi-Ju Lai: National Chi Nan University
Ping-Feng Pai: National Chi Nan University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2022, vol. 36, issue 13, No 18, 5207-5223
Abstract:
Abstract Accurate rainfall forecasting is essential in planning and managing water resource systems efficiently. However, intermittent rainfall patterns increase the difficulty of accurately forecasting rainfall values. Deep learning techniques have recently been popular and powerful in forecasting. Thus, this study employed deep belief networks with a simple exponential smoothing procedure (DBNSES) to forecast hourly intermittent rainfall values in Taiwan. Weather factors were used as independent variables to forecast rainfall volume. The simple exponential smoothing data preprocessing procedure was used to deal with the intermittent data patterns. The other three forecasting models, namely the least squares support vector regression (LSSVR), the generalized regression neural network (GRNN), and the backpropagation neural network (BPNN), were employed to forecast rainfall using the same data sets. In addition, genetic algorithms were utilized to determine the parameters of four forecasting models. The empirical results indicate that the developed DBNSES models are superior to the other forecasting models in terms of forecasting accuracy. In addition, the DBNSES can obtain smaller values of RMSE than those in the previous studies. Therefore, the DBNSES model is a suitable and effective way of forecasting rainfall with intermittent data patterns.
Keywords: Intermittent rainfall; Deep belief networks; Forecast (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-022-03300-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:36:y:2022:i:13:d:10.1007_s11269-022-03300-3
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-022-03300-3
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().