Nonparametric Approach to Copula Estimation in Compounding The Joint Impact of Storm Surge and Rainfall Events in Coastal Flood Analysis
Shahid Latif () and
Slobodan P. Simonovic
Additional contact information
Shahid Latif: Western University
Slobodan P. Simonovic: Western University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2022, vol. 36, issue 14, No 13, 5599-5632
Abstract:
Abstract The joint probability modelling of storm surges and rainfall events is the main task in assessing compound flood risk in low-lying coastal areas. These extreme or non-extreme events may not be dangerous if considered individually but can intensify flooding impact if they occur simultaneously or successively. Recently, the copula approach has been widely accepted in compound flooding but is often limited to parametric or semiparametric distribution settings in a limited number of cases. However, both parametric and semiparametric approaches assume the prior distribution type for univariate marginals and copula joint density. In that case, there is a high risk of misspecification if the underlying assumption is violated. In addition, both approaches suffer from a lack of flexibility. This study uses bivariate copula density in the nonparametric distribution setting. The joint copula structure is approximated nonparametrically by employing the Bernstein copula estimator and Beta kernel copula density, and their performances are also compared. The proposed model is tested with 46 years of rainfall and storm surge observations collected on Canada's west coast. The marginal distribution of the selected flood variables is modelled using nonparametric kernel density estimation (KDE). Based on the different model compatibility tests, the Bernstein copula with normal KDE margins defined the joint dependence structure well. The selected nonparametric copula model is further employed to estimate joint and conditional return periods. It is found that flood hazard characteristics occurrence simultaneously is less frequent in AND-joint cases than in OR-joint cases. Also, the derived model is further used to estimate failure probability (FP) statistics to assess the variation of bivariate hydrologic risk during the project lifetime. It is found that FP statistics could be underestimated when neglecting the compound effect of storm surge and rainfall in the coastal flood risk.
Keywords: Flood; Nonparametric copula; Beta kernel copula estimator; Bernstein copula estimator; Bivariate joint analysis; Return periods (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-022-03321-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:36:y:2022:i:14:d:10.1007_s11269-022-03321-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-022-03321-y
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().