Extreme Rainfall Variations Under Climate Change Scenarios. Case of Study in an Andean Tropical River Basin
Martín Montenegro (),
Daniel Mendoza (),
Diego Mora (),
Fernando García () and
Alex Avilés ()
Additional contact information
Martín Montenegro: Universidad de Cuenca
Daniel Mendoza: Universidad de Cuenca
Diego Mora: Universidad de Cuenca
Fernando García: Universidad de Cuenca
Alex Avilés: Universidad de Cuenca
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2022, vol. 36, issue 15, No 9, 5944 pages
Abstract:
Abstract Maximum rainfall events have triggered hazards that harm ecosystems and populations. Climate change could modify these extreme events, becoming more severe and frequent. Knowing the patterns of Spatio-temporal changes in the distribution of extreme rainfall in Andean regions represents a research challenge due to the complex climate behavior in the tropical mountain basins. The study aimed to analyze future Spatio-temporal changes in maximum daily rainfall patterns. The methods and analysis were performed in the Paute river basin in Ecuador through observed and simulated data from 1985 to 2005. The outputs of an ensemble regional climate model of Ecuador (RCM) based on CMIP5 models were used with two representative concentrations pathways (RCP), scenarios 4.5 and 8.5, in two future periods; future 1 from 2011 to 2040 and future 2 from 2041 to 2070. The General Extreme Value (GEV) distribution was used to fit the maximum annual daily rainfall. The maximum rainfall change factor between historical and future periods was calculated for 5,10,30, 60, and 100 years return periods. The results showed an increment of maximum rainfall spatial average in all return periods for RCP 4.5 and 8.5 in the future 1. Future 2 presented an increment of maximum rainfall spatial average in all return periods for RCP 4.5 and 8.5 scenarios except for the 30,60 and 100 years return periods of the RCP 4.5 scenario, displaying a decrease of maximum rainfall spatial average. Knowing rainfall pattern projections could help formulate actions to diminish the risks of extreme rainfall.
Keywords: Maximum daily rainfall; Climate Change; CMIP5; GEV; Andean tropical river basin (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-022-03332-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:36:y:2022:i:15:d:10.1007_s11269-022-03332-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-022-03332-9
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().