Development a Novel Integrated Distributed Multi-objective Simulation-optimization Model for Coastal Aquifers Management Using NSGA-II and GMS Models
Mahmoud Mohammad Rezapour Tabari () and
Mahbobeh Abyar ()
Additional contact information
Mahmoud Mohammad Rezapour Tabari: University of Mazandaran
Mahbobeh Abyar: Shahrekord University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2022, vol. 36, issue 1, No 5, 75-102
Abstract:
Abstract Groundwater is one of the most valuable water resources in the world in terms of quantity and quality. Therefore, their protection as an important issue should be considered by the operating managers. Among the types of existing groundwater aquifers, the coastal aquifers need more protection because they could be contaminated by salt in the result of seawater intrusion. Their protection is a priority based on an optimal and comprehensive management model. Increasement of demands in these areas, especially in recent years, requires sustainable and optimal management as one of the main objectives for long-term operation in the future. In order to meet this purpose, a simulation-optimization model of Bandargaz-Nokandeh coastal groundwater system that located in the north of Iran was proposed by the employment of the Groundwater Modeling System (GMS) numerical model and the Non-Dominate Sorting Genetic Algorithm-II (NSGA-II) multi-objective evolutionary optimization algorithm. In this study based on the quantitative simulated groundwater model; two managerial issues have been examined; including the control of water-table drawdown and sustainability of extraction from the wells in this aquifer. By combining these two models and implementing them, optimal withdrawal scenarios which examines different aspects of the study objectives, have been extracted. Regarding the decision-making methods of Simple Additive Weighting (SAW), Gray Relational Analysis (GRA), and Berda Aggregation method (BAM), the best scenario was determined among the points located on the optimal trade-off curve. The results show that implementations of management strategies to create a sustainable development of the Bandargaz-Nokandeh coastal aquifer, has led to a 48.45 percent decrease in water withdrawal. Also, the comparison of the groundwater table level (GWTL) under the two existing and optimal operating conditions shows a 29.54% reduction (monthly average) in the area of aquifer that contain drawdown in the GWTL. This reduction varies from 1.43% in October 2011 to 59.22% in September 2012. Based on this optimal operation policy, the consequences of excessive withdrawal, and more than the natural capacity of the aquifer, could be compensated. Besides that, in order to the sustainable development of the aquifer can be controlled the amount of water extracted from operation wells.
Keywords: Coastal aquifer; NSGA-II optimization algorithm; GMS simulation model; Groundwater; Operation wells; Sustainable management (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-021-03012-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:36:y:2022:i:1:d:10.1007_s11269-021-03012-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-021-03012-0
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().