Performance Assessment of Model Averaging Techniques to Reduce Structural Uncertainty of Groundwater Modeling
Ahmad Jafarzadeh,
Abbas Khashei-Siuki () and
Mohsen Pourreza-Bilondi ()
Additional contact information
Ahmad Jafarzadeh: University of Birjand
Abbas Khashei-Siuki: University of Birjand
Mohsen Pourreza-Bilondi: University of Birjand
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2022, vol. 36, issue 1, No 20, 353-377
Abstract:
Abstract Accurate estimates of groundwater modeling in arid regions have a crucial role in reaching a sustainable management of groundwater sources. However, groundwater modeling has been faced with different uncertainty sources; besides our imperfect knowledge, it is difficult to derive a proper prediction that can lead to reliable planning. This study aimed to improve the groundwater numerical simulations using different Model Averaging Techniques (MATs). For this, three numerical models, such as Finite Difference (FD), Finite Element (FE), and Meshfree (Mfree), were developed and their performance was verified in a real-world case study. Then various MATs including Simple Model Average (SMA), Weighted Average Method (WAM), Multi Model Super Ensemble (MMSE), Modified MMSE (M3SE) and Bayesian Model Averaging (BMA) were employed to improve the simulated groundwater level Fluctuations (outputs of three numerical models). The findings of this study demonstrated that the numerical model uncertainty is considerable and should not be neglected in the uncertainty analysis of groundwater modeling. In terms of RMSE, the lowest value of 0.148 m was obtained by Mfree while higher values of 1.355 m and 0.287 m are calculated for FD and FE respectively. In addition, the performance assessment of MATs showed a capacity to generate a skillful simulation compared to numerical predictions. Although the MMSE and M3SE (with RMSE values of 0.088 and 0.103 m) generated a desirable prediction in the majority of piezometers, they suffer from a main deficiency, such as the multicollinearity issue. From this perspective, it was concluded that the BMA produced a more reliable and reasonable prediction than other MATs.
Keywords: Mathematical model uncertainty; Mesh less; Radial interpolation method; Consensus prediction; Weight estimation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-021-03031-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:36:y:2022:i:1:d:10.1007_s11269-021-03031-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-021-03031-x
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().