EconPapers    
Economics at your fingertips  
 

Comparison of Self-Organizing Map, Artificial Neural Network, and Co-Active Neuro-Fuzzy Inference System Methods in Simulating Groundwater Quality: Geospatial Artificial Intelligence

V. Gholami, M. R. Khaleghi (), S. Pirasteh and Martijn J. Booij
Additional contact information
V. Gholami: University of Guilan
M. R. Khaleghi: Islamic Azad University
S. Pirasteh: Southwest Jiaotong University
Martijn J. Booij: University of Twente

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2022, vol. 36, issue 2, No 1, 469 pages

Abstract: Abstract Water quality experiments are difficult, costly, and time-consuming. Therefore, different modeling methods can be used as an alternative for these experiments. To achieve the research objective, geospatial artificial intelligence approaches such as the self-organizing map (SOM), artificial neural network (ANN), and co-active neuro-fuzzy inference system (CANFIS) were used to simulate groundwater quality in the Mazandaran plain in the north of Iran. Geographical information system (GIS) techniques were used as a pre-processer and post-processer. Data from 85 drinking water wells was used as secondary data and were separated into two splits of (a) 70 percent for training (60% for training and 10% for cross-validation), and (b) 30 percent for the test stage. The groundwater quality index (GWQI) and the effective water quality factors (distance from industries, groundwater depth, and transmissivity of aquifer formations) were implemented as output and input variables, respectively. Statistical indices (i.e., R squared (R-sqr) and the mean squared error (MSE)) were utilized to compare the performance of three methods. The results demonstrate the high performance of the three methods in groundwater quality simulation. However, in the test stage, CANFIS (R-sqr = 0.89) had a higher performance than the SOM (R-sqr = 0.8) and ANN (R-sqr = 0.73) methods. The tested CANFIS model was used to estimate GWQI values on the area of the plain. Finally, the groundwater quality was mapped in a GIS environment associated with CANFIS simulation. The results can be used to manage groundwater quality as well as support and contribute to the sustainable development goal (SDG)-6, SDG-11, and SDG-13.

Keywords: Ground water quality index; Training; Test; Groundwater quality map; Mazandaran plain (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-021-02969-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:36:y:2022:i:2:d:10.1007_s11269-021-02969-2

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-021-02969-2

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:36:y:2022:i:2:d:10.1007_s11269-021-02969-2