Translational Platform for Increasing Water Use Efficiency in Agriculture: Comparative Analysis of Plantation Crops
Eliav Shtull-Trauring,
Asher Azenkot and
Nirit Bernstein ()
Additional contact information
Eliav Shtull-Trauring: Institute of Soil, Water and Environmental Sciences, Volcani Center
Asher Azenkot: Agricultural Extension Service, Ministry of Agriculture
Nirit Bernstein: Institute of Soil, Water and Environmental Sciences, Volcani Center
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2022, vol. 36, issue 2, No 9, 587 pages
Abstract:
Abstract Shortage of water drives efforts to increase water use efficiency in agriculture. However, identification of hot-spots of water use inefficiency in agriculture is hindered by difficulty of monitoring the large number of factors that influence water use for irrigation. The goal of this study was to assess interrelations between crop type and topo-climate on water use, water use efficiency, and economic productivity, on a country and regional scales. We hypothesized that water use efficiency of plantation crops across topo-climatic regions do not match crop prevalence in each region. High-resolution datasets related to crop distribution, regional irrigation recommendation, and local multiyear reference evapotranspiration were integrated for the analysis of water demand (m3/ha), blue water footprint (m3/ton) and economic land (USD/ha) and water (USD/m3) productivity, across geographical regions throughout Israel. The results demonstrate a large variability in all indices across crops and regions, reflecting variability in water demand for individual crops, due to effects of topo-climatic conditions on reference evapotranspiration. Water footprint and water demand ranged ~ 90- 3,740 m3/ton and ~ 3,800- 23,500 m3/ha respectively, between crops. Large differences were identified between the highest and lowest water footprint amongst cultivation regions for some crops, such as avocado and almond, with a considerable portion of the cultivation area located in regions with the highest water footprint. This highlights the need to direct cultivation of crops to regions with relative low water footprint, to help reduce water use and increase water use efficiency. The results shown are a product of an interactive translational platform that facilitates access to an integrated high-resolution agricultural dataset via a user-friendly interactive Agri-Atlas, providing a comparative analysis of the agricultural and water footprints of different regions and crops in Israel. While the translational platform currently uses local data for Israel, it can be adapted for any country or region where agricultural data is collected, to support data-based studies and policies to help increase agricultural water use efficiency, in face of the growing demand for food and diminishing water supplies.
Keywords: Crop; Water footprint; Data integration; Irrigation; Economic productivity (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-021-03040-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:36:y:2022:i:2:d:10.1007_s11269-021-03040-w
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-021-03040-w
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().