Using Optimized Deep Learning to Predict Daily Streamflow: A Comparison to Common Machine Learning Algorithms
Khabat Khosravi (),
Ali Golkarian () and
John P. Tiefenbacher
Additional contact information
Khabat Khosravi: Ferdowsi University of Mashhad
Ali Golkarian: Ferdowsi University of Mashhad
John P. Tiefenbacher: Texas State University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2022, vol. 36, issue 2, No 16, 699-716
Abstract:
Abstract From a watershed management perspective, streamflow need to be predicted accurately using simple, reliable, and cost-effective tools. Present study demonstrates the first applications of a novel optimized deep-learning algorithm of a convolutional neural network (CNN) using BAT metaheuristic algorithm (i.e., CNN-BAT). Using the prediction powers of 4 well-known algorithms as benchmarks – multilayer perceptron (MLP-BAT), adaptive neuro-fuzzy inference system (ANFIS-BAT), support vector regression (SVR-BAT) and random forest (RF-BAT), the CNN-BAT model is tested for daily streamflow (Qt) prediction in the Korkorsar catchment in northern Iran. Fifteen years of daily rainfall (Rt) and streamflow data from 1997 to 2012 were collected and used for model development and evaluation. The dataset was divided into two groups for building and testing models. The correlation coefficient (r) between rainfall and streamflow with and without antecedent events (i.e., Rt-1, Rt-2, etc.) (as the input variables) and Qt (as the output variable) served as the basis for constructing different input scenarios. Several quantitative and visually-based evaluation metrics were used to validate and compare the model’s performance. The results indicate that Rt was the most effective input variable on Qt prediction and the integration of Rt, Rt-1, and Qt-1 was the optimal input combination. The evaluation metrics show that the CNN-BAT algorithm outperforms the other algorithms. The Friedman and Wilcoxon signed-rank test indicates that the prediction power of CNN-BAT algorithm is significantly/statistically different from the other developed algorithms.
Keywords: CNN-BAT; Streamflow prediction; Antecedent rainfall; Deep learning; BAT algorithm (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-021-03051-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:36:y:2022:i:2:d:10.1007_s11269-021-03051-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-021-03051-7
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().