EconPapers    
Economics at your fingertips  
 

Cause-driven Streamflow Forecasting Framework Based on Linear Correlation Reconstruction and Long Short-term Memory

Yani Lian, Jungang Luo (), Wei Xue, Ganggang Zuo and Shangyao Zhang
Additional contact information
Yani Lian: Xi’an University of Technology
Jungang Luo: Xi’an University of Technology
Wei Xue: Project Construction Co. Ltd
Ganggang Zuo: Xi’an University of Technology
Shangyao Zhang: Xi’an University of Technology

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2022, vol. 36, issue 5, No 10, 1678 pages

Abstract: Abstract Reasonable runoff forecasting is the foundation of water resource management. However, the impact of environmental change on streamflow was not fully revealed due to the lack of enough streamflow features in many previous studies. In contrast, too many features also could lead cause undesired problems, including unstable model, interpretation difficulty, overfitting, high computational complexity, and high memory complexity. To address the above problems, this study proposes a cause-driven runoff forecasting framework based on linear-correlated reconstruction and machine learning model and refers to this framework as CSLM. We use variance inflation factor (VIF), pairwise linear correlation (PLC) reconstruction, and long short-term memory (LSTM) to realize this framework, referred to as VIF-PLC-LSTM. Four experiments were conducted to demonstrate the accuracy and efficiency of the proposed framework and its VIF-PLC-LSTM realization. Four experiments compare 1) different filter thresholds of driving factors, 2) different combination prediction features, 3) different reconstruction methods of linear-correlated features, and 4) different CSLM models. Experimental results on daily streamflow data from the Tangnaihai station at the Yellow River source and the Yangxian station at the Han River show that 1) data filtering has the risk of feature information loss, 2) when the streamflow, ERA5L, and meteorology data are used as inputs at the same time, the performance of the model is superior to the combination of other prediction features; the prediction effect of different prediction features, 3) the reconstruction of linear-correlated features is not only better than dimension reduction but also can improve the forecasting performance for streamflow prediction, and 4) among different CSLM models, LSTM is superior to other models.

Keywords: Streamflow forecasting; Machine learning; Long short-term memory; Linear correlation reconstruction (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-022-03097-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:36:y:2022:i:5:d:10.1007_s11269-022-03097-1

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-022-03097-1

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:36:y:2022:i:5:d:10.1007_s11269-022-03097-1