EconPapers    
Economics at your fingertips  
 

Long-term stagnation monitoring using machine learning: comparison of artificial neural network model and convolution neural network model

Jaiyeop Lee and Ilho Kim ()
Additional contact information
Jaiyeop Lee: Korea Institute of Civil Engineering and Building Technology
Ilho Kim: Korea Institute of Civil Engineering and Building Technology

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2022, vol. 36, issue 7, No 1, 2117-2130

Abstract: Abstract In this study, a device to diffuse the flow of water in a horizontal direction was installed over a small river connected to Nakdonggang River and the dissolved oxygen (DO) concentration within the range of its influence was monitored. A DO probe was installed and operated at three depths of water; the surface layer, middle layer and deep layer. In order to judge stagnant water by operating and controlling the device automatically, an artificial neural network model that worked through profiling by logics and expert learning was applied. For expert learning, the number of all cases generated from DO data was labeled based on expert judgment. In other words, when DO concentration was divided into 7 levels, the number of cases was 343, the experts were requested to determine whether each case was a stagnant water. Machine learning was carried out targeting labelling by experts with the artificial neural network (ANN) and the convolution neural network (CNN). The target datasets for learning were 3 × 1 based on numbers from 1 to 7 and 7 × 7 based on the dot graph. The correct ratio for the ANN model learning result based on the graph was only 29.2%, so it was excluded. The correct ratio for the ANN model learning result based on numbers was 87.2%. The correct ratio for the CNN based on the graph was 94.2%. When machine learning was carried out with 30 to 300 randomly selected targeted graphs, the ANN model showed 74.6% as the correct ratio for up to 150 graphs, which was somewhat low, while the CNN showed 84.3% for 30 graphs and 94.2% for 200 graphs, a gradual increase with results comparable to the total number of graphs. By applying the relevant control logics to actual monitoring results, 91.5% and 87.4% was judged to be stagnant water from points directly and indirectly affected by the device, respectively.

Keywords: ANN; CNN; DO; Monitoring; Stagnation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11269-022-03120-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:36:y:2022:i:7:d:10.1007_s11269-022-03120-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-022-03120-5

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:36:y:2022:i:7:d:10.1007_s11269-022-03120-5