Sensitivity of the RDI and SPEI Drought Indices to Different Models for Estimating Evapotranspiration Potential in Semiarid Regions
Ruperto Ortiz-Gómez (),
Roberto S. Flowers-Cano and
Guillermo Medina-García ()
Additional contact information
Ruperto Ortiz-Gómez: Universidad Autónoma de Zacatecas, Unidad Académica de Ingeniería
Guillermo Medina-García: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Zacatecas
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2022, vol. 36, issue 7, No 21, 2492 pages
Abstract:
Abstract Drought research is of great importance for planning and management of water resources, due to the great impact that droughts have on society and ecosystems. In this study, the effect that using different models for calculating evapotranspiration has on the analysis of droughts in the semiarid region of North Central Mexico is investigated, using climatological information from 14 meteorological stations. Drought was analyzed using the Reconnaissance Drought Index (RDI) and the Standardized Precipitation Evapotranspiration Index (SPEI) at the scales of 3, 6 and 12 months. Eight evapotranspiration models were used: those of Thornthwaite, Hargreaves – Samani, Droogers – Allen, Allen, Dorji, Priestley – Taylor, Makkink and Irmak. According to three of the efficiency indices that were used – the root mean squared error (RMSE), the medium absolute error (MAE) and the concordance index – the Hargreaves – Samani model yields the best evapotranspiration results as compared to the Penman–Monteith model, whereas the models of Thornthwaite and Dorji are the least recommended for this purpose. The non-parametric Wilcoxon test, at a 5% significance level, leads to the conclusion that there are no statistically significant differences between the RDI and SPEI drought indices calculated using the Thornthwaite or the Hargreaves – Samani model. At the three scales of analysis, differences in the RDI index calculated using evapotranspiration estimated with the Thornthwaite or the Hargreaves – Samani model are minimal, but are slightly larger for the SPEI index. Drought events detected with the RDI and SPEI indices are more intense when the Thornthwaite model is used to calculate evapotranspiration instead of the Hargreaves – Samani model. These results may prove valuable in the analysis of droughts, especially in arid and semiarid regions.
Keywords: Mexico; Drought; Reconnaissance drought index; Standardized precipitation evapotranspiration index; PET calculation methods; Rainfall (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-022-03154-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:36:y:2022:i:7:d:10.1007_s11269-022-03154-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-022-03154-9
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().