A Comparative Study of Data-driven Models for Groundwater Level Forecasting
R. Sarma and
S. K. Singh ()
Additional contact information
R. Sarma: Delhi Technological University
S. K. Singh: Delhi Technological University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2022, vol. 36, issue 8, No 13, 2756 pages
Abstract:
Abstract Irregular rainfall patterns and limited freshwater availability have driven humans to increase their dependence on groundwater resources. An essential aspect of effective water resources management is forecasting groundwater levels to ensure that sufficient quantities are available for future generations. Prediction models have been widely used to forecast groundwater levels at the regional scale. This study compares the accuracy of five commonly used data-driven models–Holt–Winters’ Exponential Smoothing, Seasonal Autoregressive Integrated Moving Average, Multi-Layer Perceptron, Extreme Learning Machine, and Neural Network Autoregression for simulating the declining groundwater levels of three monitoring wells in the National Capital Territory of Delhi in India. The performance of the selected models was compared using coefficient of determination (R2), Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Results indicate that Multi-Layer Perceptron had high R2 while fitting the training data and least RMSE and MAE during testing, thus proving to be more accurate in forecasting than the other models. Multi-Layer Perceptron was used to forecast the groundwater level in the study wells for 2025. The results showed that the groundwater level will decline further if the current situation continues. Such studies help determine the appropriate model to be used for regions with limited available data. Additionally, predictions made for the future will help policymakers understand which areas need immediate attention in terms of groundwater management.
Keywords: Groundwater level forecasting; Holt-winters’ exponential smoothing; Seasonal ARIMA; Multi-layer perceptron; Extreme learning machine; Neural network autoregression (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-022-03173-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:36:y:2022:i:8:d:10.1007_s11269-022-03173-6
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-022-03173-6
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().