Multivariable Time Series Forecasting for Urban Water Demand Based on Temporal Convolutional Network Combining Random Forest Feature Selection and Discrete Wavelet Transform
Jun Guo,
Hui Sun and
Baigang Du ()
Additional contact information
Jun Guo: Wuhan University of Technology
Hui Sun: Wuhan University of Technology
Baigang Du: Wuhan University of Technology
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2022, vol. 36, issue 9, No 26, 3385-3400
Abstract:
Abstract Urban water demand forecasting is crucial to reduce the waste of water resources and environmental protection. However, the non-stationarity and non-linearity of the water demand series under the influence of multivariate makes water demand prediction one of the long-standing challenges. This paper proposes a new hybrid forecasting model for urban water demand forecasting, which includes temporal convolution neural network (TCN), discrete wavelet transform (DWT) and random forest (RF). In order to improve the model’s forecasting abilities, the RF method is used to rank the factors and remove the less important factors. The dimension of raw data is reduced to improve calculating efficiency and accuracy. Then, the original water demand series is decomposed into different characteristic sub-series of multiple variables with better-behavior by DWT to weaken the fluctuation of original series. At the core of the proposed model, TCN is utilized to establish appropriate prediction models. Finally, to test and validate the proposed model, a real-world multivariate dataset from a water plant in Suzhou, China, is used for comparison experiments with the most recent state-of-the-art models. The results show that the mean absolute percentage error (MAPE) of the proposed model is 1.22% which is smaller than the other benchmark models. The proposed model indicates the only 2.2% of the prediction results have a relative error of more than 5%. It shows that the reliable results of the proposed model can be a superior tool for urban water demand forecasting.
Keywords: Multivariate time series prediction; Urban water demand; Temporal convolutional network (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-022-03207-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:36:y:2022:i:9:d:10.1007_s11269-022-03207-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-022-03207-z
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().