Assessment of Crop-Drought Relationship: A Climate Change Perspective
Soumyashree Dixit (),
V. Neethin () and
K. V. Jayakumar ()
Additional contact information
Soumyashree Dixit: Indian Institute of Technology
V. Neethin: Indian Institute of Technology
K. V. Jayakumar: National Institute of Technology Warangal
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2023, vol. 37, issue 10, No 15, 4075-4095
Abstract:
Abstract Crop productivity is a highly vulnerable criterion to drought onset and offset. Therefore, it is necessary to assess the crop-drought relationship from the perspective of climate change for sustainable development in agricultural practices. Aurangabad and Pune districts in the state of Maharashtra are considered as the study area. The temporal evolution of the Standardised Yield Residual Series (SYRS) is investigated, and then the impact of the detrended Standard Precipitation Evapotranspiration Index (SPEI) on different crops was studied. The future crop yields for three crops maize, cotton, and wheat, are projected based on the AquaCrop model by considering the bias-corrected ensemble Coupled Model Intercomparison Model Project Phage 6-Global Climate Models (CMIP6-GCMs) under four different Shared Socioeconomic Scenarios (SSPs). The outcomes from the simulation indicated a high increase in crop yield, especially in the high-emission scenario (SSP585). The increase in crop productivity could be attributed to the favourable thermal range, enhanced CO2 concentration, and increase in water productivity of crops. SPEI has a moderate association with the SYRS at various crop productivity phases. The greatest yield-drought relationship existed for wheat and the least for maize during the study period for the Aurangabad region for the Reference Period (RP). Cotton is expected to be more sensitive to drought onset in the future for the Pune region. This approach can assist stakeholders to understand better the impact of drought on the agricultural sectors, which is critical for reducing adverse situations related to drought.
Keywords: SPEI; SYRS; GCM; CMIP6; SSPs (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-023-03540-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:37:y:2023:i:10:d:10.1007_s11269-023-03540-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-023-03540-x
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().