EconPapers    
Economics at your fingertips  
 

A Novel Smoothing-Based Deep Learning Time-Series Approach for Daily Suspended Sediment Load Prediction

Bibhuti Bhusan Sahoo (), Sovan Sankalp and Ozgur Kisi
Additional contact information
Bibhuti Bhusan Sahoo: Centurion University of Technology and Management
Sovan Sankalp: Centurion University of Technology and Management
Ozgur Kisi: Technical University of Lübeck

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2023, vol. 37, issue 11, No 4, 4292 pages

Abstract: Abstract Precise assessment of suspended sediment load (SSL) is vital for many applications in hydrological modeling and hydraulic engineering. In this study, a smoothed long short-term memory (SM-LSTM) model was used to predict day-to-day SSL at two stations over two rivers namely Thebes station on the Mississippi River and Omaha station on the Missouri River. The model first removes the interference factors in the SSL time series by Fourier Transformation (FT) de-noising and then feeds into a long short-term memory (LSTM) network to forecast the SSL. Before de-noising, missing data in the time series is computed using the Monte Carlo multiple imputation technique. LSTM networks are a type of recurrent neural network (RNN) that incorporates memory cells, which makes them well-suited for learning temporal associations over the previous time steps. The model was built using daily observed time series of SSL in the Mississippi and Missouri rivers in the United States. The developed model was then assessed and compared to LSTM and RNN. These models were trained using 4 different time lags of the SSL time series as inputs. The SM-LSTM model with 12 lagged inputs outperformed the other models with the lowest root mean square errors (RMSE) = 32254 ton and mean absolute errors (MAE) = 19517 ton, and the highest Nash–Sutcliffe efficiency (NSE) = 0.99 for the Thebes Station while the model with 3 lagged inputs acted as the best with the lowest RMSE = 2244 ton and MAE = 1370 ton, and the highest NSE = 0.989 for the Omaha Station. The comparison of prediction accuracies showed that the SM-LSTM model can more satisfactorily predict daily SSL time series compared to LSTM and RNN.

Keywords: Suspended sediment load; Smoothed long short-term memory; Recurrent neural network; Fourier transformation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11269-023-03552-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:37:y:2023:i:11:d:10.1007_s11269-023-03552-7

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-023-03552-7

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:37:y:2023:i:11:d:10.1007_s11269-023-03552-7