Detecting Background Leakages in Water Infrastructure With Fiber Optic Distributed Temperature Sensing: Insights From a Heat Transfer-Unsaturated Flow Model
Andrea D’Aniello ()
Additional contact information
Andrea D’Aniello: Department of Civil, Architectural and Environmental Engineering
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2023, vol. 37, issue 14, No 7, 5535-5558
Abstract:
Abstract The use of fiber optic distributed temperature sensing (DTS) to detect and locate leaks is still in its infancy in water infrastructure, despite its promising capabilities. Only few experiments tested this technology, and none of these studies focused on small but persistent leaks, like background leakages, which are ubiquitous and generally go undetected with the technology currently available, thus posing a serious threat to the available water resource. To test the feasibility of detecting and locating background leakages with fiber optic DTS, this study provides a detailed analysis on flow and temperature alterations around leaking water pipelines in presence of small leaks (5, 25, and 125 L/d) with small to moderate temperature differences with the surrounding soil, under 3 different pipe defect configurations, either in absence or in presence of pipe thermal insulation. Transient 3D heat transfer-unsaturated flow numerical simulations showed that there is potential to use temperature alterations to detect and locate incredibly small leaks with fiber optic DTS, like background leakages, despite the influence of pipe temperature on the surrounding soil. The analysis showed that extent, distribution, and magnitude of these alterations are convection dominated at a given temperature difference between leaked water and undisturbed soil, and that it may not be strictly necessary to place the optical fiber directly below the pipe. Indeed, optical fibers located within the utility trench at the sides of the pipe and below its bottom showed comparable or even better performance, thus giving new opportunities to retrofit existing pipelines as well.
Keywords: Pipe leakage; Distributed temperature sensing (DTS); Optical fibers; Leak detection and location; Utility trench; Unsaturated zone (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-023-03617-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:37:y:2023:i:14:d:10.1007_s11269-023-03617-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-023-03617-7
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().