Improving Linear Interpolation of Missing Hydrological Data by Applying Integrated Autoregressive Models
Tomasz Niedzielski () and
Michał Halicki ()
Additional contact information
Tomasz Niedzielski: University of Wrocław
Michał Halicki: University of Wrocław
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2023, vol. 37, issue 14, No 15, 5707-5724
Abstract:
Abstract The application of linear interpolation for handling missing hydrological data is unequivocal. On one hand, such an approach offers good reconstruction in the vicinity of last observation before a no-data gap and first measurement after the gap. On the other hand, it omits irregular variability of hydrological data. Such an irregularity can be described by time series models, such as for instance the autoregressive integrated moving average (ARIMA) model. Herein, we propose a method which combines linear interpolation with autoregressive integrated model (ARI, i.e. ARIMA without a moving average part), named LinAR (available at GitHub), as a tool for inputing hydrological data. Linear interpolation is combined with the ARI model through linear scaling the ARI-based prediction issued for the no-data gap. Such an approach contributes to the current state of art in gap-filling methods since it removes artificial jumps between last stochastic prediction and first known observation after the gap, also introducing some irregular variability in the first part of the no-data gap. The LinAR method is applied and evaluated on hourly water level data collected between 2016 and 2021 (52,608 hourly steps) from 28 gauges strategically located within the Odra/Oder River basin in southwestern and western Poland. The data was sourced from Institute of Meteorology and Water Management (Poland). Evaluating the performance with over 100 million assessments in the validation experiment, the study demonstrates that the LinAR approach outperforms the purely linear method, especially for short no-data gaps (up to 12 hourly steps) and for rivers of considerable size. Based on rigorous statistical analysis of root mean square error (RMSE) – expressed (1) absolutely, (2) as percentages and (3) using RMSE error bars – the percentage improvement, understood as percentage difference between RMSE of linear and LinAR interpolations, was found to reach up to 10%.
Keywords: Hydrology; Imputation; Water level; Linear interpolation; Autoregression (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-023-03625-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:37:y:2023:i:14:d:10.1007_s11269-023-03625-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-023-03625-7
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().