EconPapers    
Economics at your fingertips  
 

Reservoir Inflow Prediction: A Comparison between Semi Distributed Numerical and Artificial Neural Network Modelling

Mahesh Shelke (), S. N. Londhe (), P. R. Dixit () and Pravin Kolhe ()
Additional contact information
Mahesh Shelke: Vishwakarma Institute of Information Technology
S. N. Londhe: Vishwakarma Institute of Information Technology
P. R. Dixit: Vishwakarma Institute of Information Technology
Pravin Kolhe: Water Resource Department, Government of Maharashtra

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2023, vol. 37, issue 15, No 16, 6127-6143

Abstract: Abstract Reservoir inflow is a major component of the reservoir operations management system. It becomes highly essential to predict the accurate reservoir inflow. The lumped models and semi-distributed or fully distributed model implemented to solve a range of specific problems in the prediction of reservoir inflow. The findings in this paper compare a conceptual semi distributed Hydrologic Engineering Centre Hydrologic Modelling System (HEC-HMS) model and an ANN (Artificial Neural Network) based model for the prediction of inflow in the Koyna reservoir catchment, Maharashtra. The performance of the models is assessed using different statistical indicators such as Nash–Sutcliffe Efficiency (NSE), Root Mean Square Error (RMSE), Correlation Coefficient (r) and Mean Absolute Error (MAE). The results confirmed the ability of the semi distributed (rHEC-HMS = 0.92, RMSEHEC-HMS = 129.37 m3/s, MAEHEC-HMS = 21.66 m3/s, NSEHEC-HMS = 0.82 and RSRHEC-HMS = 0.42) and ANN model (rANN = 0.85, RMSEANN = 176.29 m3/s, MAEANN = 14.62 m3/s, NSEANN = 0.69 and RSRANN = 0.55) to capture the effect of the complex hydrological phenomenon, variations of land use and soils of watershed. The study illustrates that the semi distributed HEC-HMS model shows moderately better results compared to ANN model. It may be noted that the ANN predicts the reservoir inflow using only one input i.e., rainfall, whereas the HEC-HMS requires exogenous input parameters and plenty of time for model building compared to ANN. This work will have a significant contribution for planning of reservoir operations within the catchment of Koyna reservoir.

Keywords: Reservoir Inflow; Rainfall; Artificial Neural Networks (ANNs); HEC-HMS (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11269-023-03646-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:37:y:2023:i:15:d:10.1007_s11269-023-03646-2

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-023-03646-2

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:37:y:2023:i:15:d:10.1007_s11269-023-03646-2