Rainfall-Derived Infiltration and Inflow Estimate in a Sanitary Sewer System Using Three Impulse Response Functions Derived from Physics-Based Models
Namjeong Choi () and
Arthur R. Schmidt ()
Additional contact information
Namjeong Choi: University of Illinois at Urbana-Champaign
Arthur R. Schmidt: University of Illinois at Urbana-Champaign
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2023, vol. 37, issue 1, No 17, 305-319
Abstract:
Abstract Rainfall-derived infiltration and inflow (RDII) is extraneous water in a sanitary sewer system that originates from surface runoff. Most RDII enters sanitary sewer systems through illegal connections or mechanical faults, especially in aged sewer systems. In this study, the physical process of three primary RDII sources: roof downspout, sump pump, and leaky lateral, are investigated using physics-based models. These three sources represent three different flow paths: direct connection of impervious catchments, mixed flow through coarse porous media followed by a direct connection, and percolated flow through compacted soil. Due to the differences in medium and the lengths of flow paths, flow responses of these three RDII sources differ in time and magnitude. In turn, they can be distinctly identified from each other. The typical flow response of each RDII source is represented as an impulse response function (IRF), a flow response to a pre-specified representative rainfall computed using physics-based models. The total RDII flow hydrograph is presented as a combination of these three IRFs. The weighting factors of each IRF are calculated using a genetic algorithm technique in a test sewer basin in a suburb of Chicago, IL. The model results suggest leaky lateral might be the biggest RDII contributor to the system. The model performance was compared with one of the more widely used RDII estimation methods, the Storm Water Management Model RTK method. While the RTK method shows better performance overall, the IRF method provides a unique solution with robust performance. The suggested physics-based approach may shed light on identifying local RDII issues with more detail, facilitating more effective management of a sewer system.
Keywords: Sanitary sewer infiltration and inflow; Physics-based impulse response functions; Genetic algorithm (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-022-03370-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:37:y:2023:i:1:d:10.1007_s11269-022-03370-3
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-022-03370-3
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().