Nonstationary Regional Flood Frequency Analysis Based on the Bayesian Method
Shuhui Guo (),
Lihua Xiong (),
Jie Chen (),
Shenglian Guo (),
Jun Xia (),
Ling Zeng () and
Chong-Yu Xu ()
Additional contact information
Shuhui Guo: Wuhan University
Lihua Xiong: Wuhan University
Jie Chen: Wuhan University
Shenglian Guo: Wuhan University
Jun Xia: Wuhan University
Ling Zeng: Bureau of Hydrology, Changjiang Water Resources Commission
Chong-Yu Xu: University of Oslo
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2023, vol. 37, issue 2, No 5, 659-681
Abstract:
Abstract Most researches on regional flood frequency analysis (RFFA) have proved that the incorporation of hydrologic information (e.g., catchment attributes and flood records) from different sites in a region can provide more accurate flood estimation than using only the observed flood series at the site of concern. One kind of RFFA is based on the Bayesian method with prior information inferred from regional regression by using the generalized least squares (GLS) model, which is more flexible than other RFFA methods. However, the GLS model for regional regression is a stationary method and not suitable for coping with nonstationary prior information. In this study, in nonstationary condition, the Bayesian RFFA with the prior information inferred from regional regression by using the linear mixed effect (LME) model (i.e. a model that adds random effects to the GLS model) is investigated. Both the GLS-based and LME-based Bayesian RFFA methods have been applied to four hydrological stations within the Dongting Lake basin for comparison, and the results show that the performance of nonstationary LME-based Bayesian RFFA method is better than that of stationary GLS-based Bayesian RFFA method according to the deviance information criterion (DIC). Compared with the stationary GLS-based Bayesian RFFA method, changes in uncertainty of regression coefficients estimation of at-site flood distribution parameters are different from site to site by using the nonstationary LME-based Bayesian RFFA method. The use of nonstationary LME-based Bayesian RFFA method reduces design flood uncertainty, especially for the very small exceedance probability at the tail. This study extends the application of the Bayesian RFFA method to the nonstationary condition, which is helpful for nonstationary flood frequency analysis of ungauged sites.
Keywords: Catchment attributes; Regional regression; GLS model; LME model; Prior probability distribution; Posterior probability distribution (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-022-03394-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:37:y:2023:i:2:d:10.1007_s11269-022-03394-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-022-03394-9
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().