Advanced Machine Learning Model for Prediction of Drought Indices using Hybrid SVR-RSM
Jamshid Piri (),
Mohammad Abdolahipour () and
Behrooz Keshtegar
Additional contact information
Jamshid Piri: University of Zabol
Mohammad Abdolahipour: University of Tehran
Behrooz Keshtegar: University of Zabol
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2023, vol. 37, issue 2, No 6, 683-712
Abstract:
Abstract Drought, as a phenomenon that causes significant damage to agriculture and water resources, has increased across the globe due to climate change. Hence, scientists are attracted to developing drought prediction models for mitigation strategies. Different drought indices (DIs) have been proposed for drought monitoring during the past few decades, most of which are probabilistic, highly stochastic, and non-linear. The present study inspected the capability of various machine learning (ML) models, including artificial neural network (ANN) and support vector regression (SVR) as original predictive models and optimized by two selected algorithms, namely, particle swarm optimization (SVR-PSO) and response surface method (SVR-RSM) to predict the meteorological drought indices of standardized precipitation index (SPI), percentage of normal precipitation (PN), effective drought index (EDI), and modified China-Z index (MCZI) on a monthly time scale. A novel model named SVR-RMS is introduced by using two calibrating processes given from RSM with two inputs and the SVR by predicted data handled with RSM given from the first calibrating procedure. For evaluating the models, different meteorological input variables in the period 1981–2020 were considered from 11 synoptic stations in arid and semi-arid climates of Iran, which frequently experience droughts. The SPI showed the highest and lowest correlation with MCZI (0.71) and EDI (0.34), respectively. The results of testing dataset (2011–2020) indicated that the SVR-RSM produced superior abilities for both accuracy and tendency compared to other models, while the SVR-PSO model is better than the ANN and SVR. The worst results of drought prediction were obtained for EDI. However, all models provided the acceptable EDI prediction in the high-temperature station of Ahvaz in the south of the country. Application of SVR-RSM as a novel hybrid model can be suggested for predicting the DIs on a short time scale in arid and semi-arid areas.
Keywords: Machine learning models; Drought indices; Hybrid model; Drought prediction; SVR-RSM (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-022-03395-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:37:y:2023:i:2:d:10.1007_s11269-022-03395-8
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-022-03395-8
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().