Failure Conditions Assessment of Complex Water Systems Using Fuzzy Logic
Miloš Milašinović (),
Damjan Ivetić (),
Milan Stojković () and
Dragan Savić ()
Additional contact information
Miloš Milašinović: University of Belgrade
Damjan Ivetić: University of Belgrade
Milan Stojković: The Institute for Artificial Intelligence Research and Development of Serbia
Dragan Savić: University of Belgrade
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2023, vol. 37, issue 3, No 8, 1153-1182
Abstract:
Abstract Climate change, energy transition, population growth and other natural and anthropogenic impacts, combined with outdated (unfashionable) infrastructure, can force Dam and Reservoir Systems (DRS) operation outside of the design envelope (adverse operating conditions). Since there is no easy way to redesign or upgrade the existing DRSs to mitigate against all the potential failure situations, Digital Twins (DT) of DRSs are required to assess system’s performance under various what-if scenarios. The current state of practice in failure modelling is that failures (system’s not performing at the expected level or not at all) are randomly created and implemented in simulation models. That approach helps in identifying the riskiest parts (subsystems) of the DRS (risk-based approach), but does not consider hazards leading to failures, their occurrence probabilities or subsystem failure exposure. To overcome these drawbacks, this paper presents a more realistic failure scenario generator based on a causal approach. Here, the novel failure simulation approach utilizes fuzzy logic reasoning to create DRS failures based on hazard severity and subsystems’ reliability. Combined with the system dynamics (SD) model this general failure simulation tool is designed to be used with any DRS. The potential of the proposed method is demonstrated using the Pirot DRS case study in Serbia over a 10-year simulation period. Results show that even occasional hazards (as for more than 97% of the simulation there were no hazards), combined with outdated infrastructure can reduce DRS performance by 50%, which can help in identifying possible “hidden” failure risks and support system maintenance prioritization. Graphical Abstract
Keywords: Water resources resilience; Digital twins; Failure modes; System dynamics model (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-022-03420-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:37:y:2023:i:3:d:10.1007_s11269-022-03420-w
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-022-03420-w
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().