EconPapers    
Economics at your fingertips  
 

Comparative Assessment of Improved SVM Method under Different Kernel Functions for Predicting Multi-scale Drought Index

Chaitanya B. Pande (), N. L. Kushwaha, Israel R. Orimoloye, Rohitashw Kumar, Hazem Ghassan Abdo, Abebe Debele Tolche and Ahmed Elbeltagi ()
Additional contact information
Chaitanya B. Pande: Indian Institute of Tropical Meteorology
N. L. Kushwaha: ICAR-Indian Agricultural Research Institute
Israel R. Orimoloye: University of the Free State
Rohitashw Kumar: SKUAST- Kashmir
Hazem Ghassan Abdo: University of Tartous
Abebe Debele Tolche: Haramaya Institute of Technology, Haramaya University
Ahmed Elbeltagi: Mansoura University

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2023, vol. 37, issue 3, No 18, 1367-1399

Abstract: Abstract This paper focus on the drought monitoring and forecasting for semi-arid region based on the various machine learning models and SPI index. Drought phenomena are crucial role in the agriculture and drinking purposes in the area. In this study, Standardized Precipitation Index (SPI) was used to predicted the future drought in the upper Godavari River basin, India. We have selected the ten input combinations of ML model were used to prediction of drought for three SPI timescales (i.e., SPI -3, SPI-6, and SPI-12). The historical data of SPI from 2000 to 2019 was used for creation of ML models SPI prediction, these datasets was divided into training (75% of the data) and testing (25% of the data) models. The best subset regression method and sensitivity analysis were applied to estimate the most effective input variables for estimation of SPI 3, 6, and 12. The improved support vector machine model using sequential minimal optimization (SVM-SMO) with various kernel functions i.e., SMO-SVM poly kernel, SMO-SVM Normalized poly kernel, SMO-SVM PUK (Pearson Universal Kernel) and SMO-SVM RBF (radial basis function) kernel was developed to forecasting of the SPI-3,6 and 12 months. The ML models accuracy were compared with various statistical indicators i.e., root mean square error (RMSE), mean absolute error (MAE), relative absolute error (RAE), root relative squared error (RRSE), and correlation coefficient (r). The results of study area have been showed that the SMO-SVM poly kernel model precisely predicted the SPI-3 (R2 = 0.819) and SPI-12 (R2 = 0.968) values at Paithan station; the SPI-3 (R2 = 0.736) and SPI-6 (R2 = 0.841) values at Silload station, respectively. The SMO-SVM PUK kernel is found that the best ML model for the prediction of SPI-6 (R2 = 0.846) at Paithan station and SPI-12 (R2 = 0.975) at the Silload station. The compared with SVM-SMO poly kernel and SVM-SMO PUK kernel was observed, these models are best forecasting of drought (i.e. SPI-6 and SPI-12), while SVM-SMO poly kernel is good for SPI-3 prediction at both stations. The results have been showed the ability of the SVM-SMO algorithm with various kernel functions successfully applied for the forecasting of multiscale SPI under the climate changes. It can be helpful for decision making in water resource management and tackle droughts in the semi-arid region of central India.

Keywords: SPI; Sensitivity analysis; Support vector machine; Best subset regression; Kernel functions (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-023-03440-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:37:y:2023:i:3:d:10.1007_s11269-023-03440-0

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-023-03440-0

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:37:y:2023:i:3:d:10.1007_s11269-023-03440-0