Criticality of Isolation Valves in Water Distribution Networks with Hydraulics and Topology
Richárd Wéber (),
Tamás Huzsvár (),
Ákos Déllei () and
Csaba Hős ()
Additional contact information
Richárd Wéber: Budapest University of Technology and Economics
Tamás Huzsvár: Budapest University of Technology and Economics
Ákos Déllei: Budapest University of Technology and Economics
Csaba Hős: Budapest University of Technology and Economics
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2023, vol. 37, issue 5, No 19, 2193 pages
Abstract:
Abstract Occasional, random pipe bursts are inevitable in water distribution networks; thus, properly operating isolation valves is critical. During a shutdown, the damaged segment is segregated using the neighbouring valves, causing the smallest isolation possible. This study analyses the importance of isolation valves individually from the perspective of the demand shortfall increment. An in-house, open-source software called STACI performs demand-driven simulations to solve the hydraulic equations with pressure-dependent demand determining the nodal pressures, the volumetric flow rates, and the consumption loss. The system has an additional consumption loss if an isolation valve cannot be closed. The criticality of an isolation valve is the increment in the relative demand shortfall caused by its malfunction. Moreover, centrality indices from complex network theory are applied to estimate the criticality without the need for computationally expensive hydraulic simulations. The distribution of criticality values follows a power-law trend, i.e. some of the isolation valves have significantly higher importance during a shutdown. Moreover, Spearman’s rank correlation coefficients between the centrality and criticality values indicate limited applicability. The criticality analysis can highlight which isolation valves have higher importance during reconstruction planning or maintenance. The Katz and the Degree centrality show a moderate positive correlation to the criticality, i.e., if numerous hydraulic simulations are not feasible, these quantities give an acceptable estimate.
Keywords: Criticality; Isolation valve; Water distribution networks; Vulnerability; Centrality (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-023-03488-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:37:y:2023:i:5:d:10.1007_s11269-023-03488-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-023-03488-y
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().