Future Changes in Precipitation Over Northern Europe Based on a Multi-model Ensemble from CMIP6: Focus on Tana River Basin
Sogol Moradian (),
Ali Torabi Haghighi,
Maryam Asadi and
Seyed Ahmad Mirbagheri
Additional contact information
Sogol Moradian: K. N. Toosi University of Technology
Ali Torabi Haghighi: University of Oulu
Maryam Asadi: K. N. Toosi University of Technology
Seyed Ahmad Mirbagheri: K. N. Toosi University of Technology
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2023, vol. 37, issue 6, No 13, 2447-2463
Abstract:
Abstract Accurate climate projections help policymakers mitigate the negative effects of climatic changes and prioritize environmental issues based on scientific evidences. These projections rely heavily on the outputs of GCMs (General Circulation Models), but the large number of GCMs and their different outputs in each region confuses researchers in their selection. In this paper, we analyzed the performance of a CMIP6 (Climate Model Intercomparison Project Phase 6) multi-model ensemble for Pr (precipitation) data over NE (Northern Europe). First of all, we evaluated the overall performance of 12 CMIP6 models from GCMs in 30 years of 1985–2014. Furthermore, future projections were analyzed between 2071 and 2100 using SSP1-2.6 and SSP5-8.5 (Shared Socioeconomic Pathways). Then, simulations were statistically improved using an ensemble method to correct the systematic error of the CMIP6 models and then the capacity of postprocessed data to reproduce historical trends of climate events was investigated. Finally, the possible spatio-temporal changes of future Pr data were explored in Tana River Basin. The results of this study show that different CMIP6 models do not have the same accuracy in estimating Pr in the study area. However, the ensemble method can be effective in increasing the accuracy of the projections. The results of this study projected a change in the monthly Pr data over Tana River Basin by 2.46% and 2.06% from 2071 to 2100 compared to the historical period, based on SSP1-2.6 and SSP5-8.5, respectively.
Keywords: Climate change; CMIP6; Model evaluation/performance; Multi-model ensemble; Precipitation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-022-03272-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:37:y:2023:i:6:d:10.1007_s11269-022-03272-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-022-03272-4
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().