The Great Salt Lake Water Level is Becoming Less Resilient to Climate Change
Daniyal Hassan (),
Steven J. Burian,
Ryan C. Johnson,
Sangmin Shin and
Michael E. Barber
Additional contact information
Daniyal Hassan: University of Utah
Steven J. Burian: University of Alabama
Ryan C. Johnson: University of Alabama
Sangmin Shin: Southern Illinois University
Michael E. Barber: University of Utah
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2023, vol. 37, issue 6, No 26, 2697-2720
Abstract:
Abstract Climate change and water diversions are putting the Great Salt Lake (GSL) at risk. Projections indicate a continued decrease in the GSL water surface elevation (WSE) would lead to several catastrophic consequences. An aspect of the GSL dynamics gaining importance, and not addressed in past studies, is how resilient the lake WSE will be to increasing diversions from contributing rivers, intensifying drought conditions, and more frequent hydrologic deficits caused by climate change. The objectives of the present study were to: (1) examine the impacts of historical drought and development on the GSL resilience and (2) determine future WSE resilience under a range of hydroclimate and development scenarios. The historical resilience was analyzed considering three periods with different development conditions: (1) less developed (1901–1950); (2) moderately developed (1951–2000); (3) highly developed (2001–2020). Furthermore, a range of hydroclimate and development conditions were introduced into a system dynamics-based water management model to simulate the future GSL WSE and corresponding resilience. The historical analysis showed a significant decline in resilience (45.4%) during the highly developed period compared with the moderately developed period. Future scenarios of climate change and development revealed that the mean GSL WSE for the 2021–2050 period may drop by 0.93 m, while the resilience reduces by 30%, and 38% using RCP4.5 and RCP8.5 scenarios when compared to the less and medium developed historical periods respectively. This research provides insight for the State of Utah Department of Natural Resources and stakeholders to inform water management policies and GSL adaptive management strategies.
Keywords: Lake desiccation; Urbanization; Water demand; Climate change; Water management model; Water resources planning; Sustainability (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-022-03376-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:37:y:2023:i:6:d:10.1007_s11269-022-03376-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-022-03376-x
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().