EconPapers    
Economics at your fingertips  
 

Simulation and Evaluation of Water Resources Management Scenarios Under Climate Change for Adaptive Management of Coastal Agricultural Watersheds

Aikaterini Lyra () and Athanasios Loukas ()
Additional contact information
Aikaterini Lyra: University of Thessaly
Athanasios Loukas: Aristotle University of Thessaloniki, University Campus

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2023, vol. 37, issue 6, No 22, 2625-2642

Abstract: Abstract The main objective of this paper is to analyze the impact of climate change on water resources management and groundwater quantity and quality in the coastal agricultural Almyros Basin, in Greece. Intensive groundwater abstractions for irrigation and nitrogen fertilization for crop production maximization, have caused a large water deficit, nitrate pollution, as well as seawater intrusion in the Almyros aquifer system. Multi-model climate projections for Representative Concentration Pathways (RCPs 4.5 and 8.5) from the Med-CORDEX database for precipitation and temperature have been used to evaluate the impacts of climate change on the study area. The multi-model climate projections have been bias-corrected with Delta, Delta change of Mean and Variance, Quantile Delta Change, Quantile Empirical Mapping, and Quantile Gamma Mapping methods, and statistically tested to find the best GCM/RCM multi-model ensemble. Simulation of coastal water resources has been performed using an Integrated Modelling System (IMS) that contains connected models of surface hydrology (UTHBAL), groundwater hydrology (MODFLOW), nitrate leaching/crop growth (REPIC), nitrate pollution (MT3DMS), and seawater intrusion (SEAWAT). The results indicate that the best climate multi-model ensemble consists of three (3) climate models for both RCP4.5 and RCP8.5 using the Quantile Empirical Mapping bias-correction method. The IMS was applied for historical and future periods with observed and simulated meteorological inputs (e.g. precipitation and temperature) and various irrigation and agronomic scenarios and water storage works development (i.e. reservoirs). The results indicate that at least deficit irrigation and deficit irrigation along with rain-fed cultivation schemes, combined with or without the development and operation of reservoirs, should be applied to overcome the degradation of groundwater quality and quantity in the study basin. Based on the findings of this work, the water resources management should be adaptive to tackle the water resources problems of the Almyros Basin.

Keywords: Integrated Water Resources Management; Coastal Agricultural Watershed; Groundwater Nitrate Pollution; Seawater Intrusion; Climate Change; Adaptation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-022-03392-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:37:y:2023:i:6:d:10.1007_s11269-022-03392-x

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-022-03392-x

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:spr:waterr:v:37:y:2023:i:6:d:10.1007_s11269-022-03392-x