Analytic Element-Finite Volume Based Coupled Groundwater-Surface Water Interaction model for Canal Command Systems
Komal Kumari () and
Anirban Dhar ()
Additional contact information
Komal Kumari: Birsa Institute of Technology Sindri
Anirban Dhar: Indian Institute of Technology Kharagpur
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2023, vol. 37, issue 8, No 14, 3167 pages
Abstract:
Abstract Regional scale modeling of coupled groundwater-surface water interaction in canal command areas is difficult due to high computational requirements and data insufficiency. Groundwater plays an essential role in the interaction process to fulfil the irrigation requirement in tail reaches of canal command areas. A comprehensive coupled model is required to simulate the canal command systems by incorporating the processes: (a) saturated groundwater flow, (b) unsaturated flow and (c) overland flow. In the present work, a fully-coupled model is developed that simulates saturated groundwater flow using Analytic Element Method (AEM), unsaturated flow using analytical solution and overland flow using Finite Volume Method (FVM) based Zero-inertia model. The Capability of the developed coupled model is demonstrated for Damodar Left Bank Main Canal (LBMC) under two canal regulation scenarios for “Boro Rice” cultivation season (Jan-Apr). Major canal water shortage is observed in LBMC during this season. It can be observed from the results that hydraulic heads in the upper reach are quite high whereas it is significantly lowering down as we move away from the main canal or in the lower reach where the groundwater is the main source of Boro rice irrigation. The considerable decline in hydraulic head values can be observed in LBMC which can be justified with a decrease in water supply and an increase in the area under Boro rice cultivation.
Keywords: AEM; Regional scale; GIS; Boro rice; Groundwater-surface water interaction (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-023-03494-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:37:y:2023:i:8:d:10.1007_s11269-023-03494-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-023-03494-0
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().