EconPapers    
Economics at your fingertips  
 

A Hybrid Model for Predicting the Energy Dissipation on the Block Ramp Hydraulic Structures

Mostafa Rahmanshahi (), Jafar Jafari-Asl (), Mahmood Shafai Bejestan () and Seyedali Mirjalili ()
Additional contact information
Mostafa Rahmanshahi: The Hong Kong Polytechnic University
Jafar Jafari-Asl: University of Sistan and Baluchestan
Mahmood Shafai Bejestan: Shahid Chamran University of Ahvaz
Seyedali Mirjalili: Torrens University

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2023, vol. 37, issue 8, No 16, 3187-3209

Abstract: Abstract Block ramps are among the environmentally friendly hydraulic structures used for energy dissipation in rivers and waterways. Modeling the energy dissipation on these structures is ever-challenging in hydraulic engineering. The primary goal of the current study is to propose a novel metaheuristic-based artificial intelligence (AI) framework for energy dissipation prediction on block ramp structures. An improved African Vultures Optimization Algorithm (AVOA) is used to optimize the Adaptive Neuro-Fuzzy Inference System (ANFIS) in this investigation for accurate prediction of the energy dissipation on the block ramps. The performance of the hybrid ANFIS-IAVOA model is compared with an ANFIS and its hybrid versions using original AVOA, honey badger algorithm (ANFIS-HBA), grey wolf optimizer (ANFIS-GWO), monarch butterfly optimization (ANFIS-MBO), and black widow optimization (ANFIS-BWO) models. A dataset of 210 experiments measured at Shahid Chamran University of Ahvaz and 241 experiments collected from literature are used to construct the proposed hybrid models. The results demonstrate the better efficiency of hybrid ANFIS-IAVOA with RMSE of 0.018–0.020 and R2 of 0.98–0.98 compared to ANFIS-AVOA (RMSE ~ 0.023–0.25 and R2 ~ 0.97–0.97), ANFIS-HBA (RMSE ~ 0.021–0.025 and R2 ~ 0.97–0.97), ANFIS-MBO (RMSE ~ 0.022–0.023 and R2 ~ 0.97–0.97), ANFIS-GWO (RMSE ~ 0.022–0.024 and R2 ~ 0.97–0.97), ANFIS-BWO (RMSE ~ 0.027–0.028 and R2 ~ 0.96–0.96), and ANFIS (RMSE ~ 0.029–0.033 and R2 ~ 0.954 − 0.951). The statistical measures show that the proposed ANFIS-IAVOA performs better than the other metaheuristic-based and standalone ANFIS-developed models. The impressiveness of the proposed hybrid model demonstrates that it can be used for further investigations on the probabilistic assessment of the block ramp hydraulic structures.

Keywords: Block ramp; Energy dissipation; Metaheuristic; Artificial intelligence; AVOA; ANFIS (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-023-03497-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:37:y:2023:i:8:d:10.1007_s11269-023-03497-x

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-023-03497-x

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:37:y:2023:i:8:d:10.1007_s11269-023-03497-x