Convolutional Neural Network -Support Vector Machine Model-Gaussian Process Regression: A New Machine Model for Predicting Monthly and Daily Rainfall
Mohammad Ehteram (),
Ali Najah Ahmed (),
Zohreh Sheikh Khozani () and
Ahmed El-Shafie ()
Additional contact information
Mohammad Ehteram: Semnan University
Ali Najah Ahmed: Universiti Tenaga Nasional (UNITEN)
Zohreh Sheikh Khozani: Bauhaus Universität Weimar
Ahmed El-Shafie: University of Malaya (UM)
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2023, vol. 37, issue 9, No 15, 3655 pages
Abstract:
Abstract Rainfall prediction is an important issue in water resource management. Predicting rainfall helps researchers to monitor droughts, surface water and floods. The current study introduces a new deep learning model named convolutional neural network (CONN)- support vector machine (SVM)- Gaussian regression process (GPR) to predict daily and monthly rainfall data in Terengganu River Basin, Malaysia. The CONN-SVM-GRP model can extract the most important features automatically. The main advantage of the new model is to reflect the uncertainty values in the modelling process. The lagged rainfall values were used as the input variables to the models. The proposed CONN-SVM-GRP model successfully decreased the Mean Absolute Error (MAE) of other models by 5.9%-23% at the daily scale and 20%-61% at the monthly scale. The CONN-SVM-GRP model also provided the lowest uncertainty among other models, making it a reliable tool for predicting data points and intervals. Hence, it can be concluded that CONN-SVM-GRP model contributes to the sustainable management of water resources, even when satellite data is unavailable, by using lagged values to predict rainfall. Additionally, the model extracts important features without using preprocessing methods, further improving its efficiency. Overall, the CONN-SVM-GRP model can help researchers predict rainfall, which is essential for monitoring water resources and mitigating the impacts of droughts, floods, and other natural disasters.
Keywords: Deep learning model; Rainfall pattern; Machine Learning model; Water resource management (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-023-03519-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:37:y:2023:i:9:d:10.1007_s11269-023-03519-8
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-023-03519-8
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().