EconPapers    
Economics at your fingertips  
 

Predicting Hydropower Production Using Deep Learning CNN-ANN Hybridized with Gaussian Process Regression and Salp Algorithm

Mohammad Ehtearm (), Hossein Ghayoumi Zadeh, Akram Seifi, Ali Fayazi and Majid Dehghani
Additional contact information
Mohammad Ehtearm: Semnan University
Hossein Ghayoumi Zadeh: Vali-e-Asr University of Rafsanjan
Akram Seifi: College of Agriculture, Vali-e-Asr University of Rafsanjan
Ali Fayazi: Vali-e-Asr University of Rafsanjan
Majid Dehghani: Vali-e-Asr University of Rafsanjan

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2023, vol. 37, issue 9, No 17, 3697 pages

Abstract: Abstract The hydropower industry is one of the most important sources of clean energy. Predicting hydropower production is essential for the hydropower industry. This study introduces a hybrid deep learning model to predict hydropower production. Statistical methods are unsuitable for modeling hydropower production because their accuracy depends on seasonal and periodic fluctuations. For accurate predictions, deep learning models can capture daily, weekly, and monthly patterns. Since ANNs may not capture latent and nonlinear patterns, we use deep learning models to predict hydropower production. We used Convolutional Neural Network-Multilayer Perceptron-Gaussian Process Regression (CNNE-MUPE-GPRE) to extract key features and predict outcomes. The main advantages of the hybrid model are the quantification of production uncertainty, the accurate prediction of hydropower production, and the extraction of features from input data. We use a binary SSOA to select optimal input scenarios. The new model is benchmarked against the long short term memory neural network (LSTM), Bi directional LSTM (BI-LSTM), MUPE, GPRE, MUPE-GPRE, CNNE-GPRE, and CNNE-MUPE models. The models are used to predict 1-, 2-, and 3-day ahead power. The root mean square error values of CNNE-MUPE-GPRE, CNNE-MUPE, CNNE-GPRE, MUPE-GPRE, BI-LSTM, LSTM, CNNE, MUPE, GPRE were 578, 615, 832, 861, 914, 934, 1436, 1712, and 1954 KW at the 1-day prediction horizon. The RMSE of the CNNE-MUPE-GPRE was 595, 600, and 612 at the 1-day, 2-days, and 3-days prediction horizons. Extending the prediction horizon degrades accuracy. The uncertainty of the CNNE-MUPE-GPRE model was lower than that of the other models. The CNNE-MUPE-GPRE model is recommended for more accurate hydropower production predictions.

Keywords: Hydropower; Deep learning models; Optimization algorithms; Power generation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11269-023-03521-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:37:y:2023:i:9:d:10.1007_s11269-023-03521-0

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-023-03521-0

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:37:y:2023:i:9:d:10.1007_s11269-023-03521-0