EconPapers    
Economics at your fingertips  
 

Convolutional Neural Network for Burst Detection in Smart Water Distribution Systems

Sanghoon Jun () and Kevin E. Lansey ()
Additional contact information
Sanghoon Jun: Hyper-converged Forensic Research Center for Infrastructure, Korea University
Kevin E. Lansey: The University of Arizona

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2023, vol. 37, issue 9, No 20, 3729-3743

Abstract: Abstract This study examines the benefits and limitations of a convolutional neural network (CNN) burst detection model that accounts for spatially distributed information of pressure responses in a water distribution system (WDS), i.e., the differences between measured and predicted pressure data. To that end, a 2D CNN is applied to a smart WDS where all pressures and advanced metering infrastructure (AMI) end-user demands are measured. Here, a well-calibrated hydraulic model for a WDS in Austin, TX is analyzed with measured AMI demands to predict pressure surfaces that are provided to a CNN. Alternative image data structures are examined to evaluate their importance and two different data types, raw pressure data and pressure responses, are evaluated to investigate the benefits of linking CNN with hydraulic information. In addition, the effect of field measurement errors on detection results is examined for a range of error magnitudes. Finally, burst detection results of partial and full pressure meters are assessed to study the benefits of pressure supplemented AMI systems. Based on the numerical results, several conclusions are posed. First, network layout information should be incorporated into the image data structure. In addition, CNN should incorporate hydraulic information within AMI demands rather than using raw pressure data. Lastly, large measurement errors can mask the impact of small bursts and SCADA systems are insufficient to detect these failures. Thus, pressure supplemented AMI systems are recommended.

Keywords: Advanced metering infrastructure; Convolutional neural network; Leakages; Hydraulic model; Water distribution system (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11269-023-03524-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:37:y:2023:i:9:d:10.1007_s11269-023-03524-x

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-023-03524-x

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:37:y:2023:i:9:d:10.1007_s11269-023-03524-x