Assessment of Different Methods for Estimation of Missing Rainfall Data
Tuğçe Hırca () and
Gökçen Eryılmaz Türkkan ()
Additional contact information
Tuğçe Hırca: Bayburt University
Gökçen Eryılmaz Türkkan: Balıkesir University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2024, vol. 38, issue 15, No 6, 5945-5972
Abstract:
Abstract Missing data is a common problem encountered in various fields, including clinical research, environmental sciences and hydrology. In order to obtain reliable results from the analysis, the data inventory must be completed. This paper presents a methodology for addressing the missing data problem by examining the missing data structure and missing data techniques. Simulated datasets were created by considering the number of missing data, missing data pattern and missing data mechanism of real datasets containing missing values, which are often overlooked in hydrology. Considering the missing data pattern, the most commonly used methods for missing data analysis in hydrology and other fields were applied to the created simulated datasets. Simple imputation techniques and expectation maximization (EM) were implemented in SPSS software and machine learning techniques such as k-nearest neighbor (kNN), together with the hot-deck were implemented in the Python programming language. In the performance evaluation based on error metrics, it is concluded that the EM method is the most suitable completion method. Homogeneity analyses were performed in the Mathematica programming language to identify possible changes and inconsistencies in the completed rainfall dataset. Homogeneity analyses revealed that most of the completed rainfall datasets are homogeneous at class 1 level, consistent and reliable and do not show systematic changes in time.
Keywords: Susurluk basin; Missing rainfall data; Missing data pattern; Missing data mechanism; Expectation–maximization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-024-03936-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:38:y:2024:i:15:d:10.1007_s11269-024-03936-3
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-024-03936-3
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().