The Use of Attention-Enhanced CNN-LSTM Models for Multi-Indicator and Time-Series Predictions of Surface Water Quality
Minhao Zhang,
Zhiyu Zhang,
Xuan Wang,
Zhenliang Liao () and
Lijin Wang ()
Additional contact information
Minhao Zhang: Tongji University
Zhiyu Zhang: Tongji University
Xuan Wang: Xi’an University of Architecture and Technology
Zhenliang Liao: Tongji University
Lijin Wang: Lishui University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2024, vol. 38, issue 15, No 14, 6103-6119
Abstract:
Abstract Deep learning (DL) has recently been applied to surface water quality prediction, whereas its online monitoring data consists of multiple indicators and time series, which are challenging for prediction models due to complex temporal dependencies and inter-indicator mechanisms. Convolutional neural network (CNN) and long short term memory (LSTM) can be used for indicator and temporal domains respectively, but still lack the ability to represent complex patterns in surface water quality. Since attention mechanisms are designed to effectively focus on the most crucial information, spatial attention mechanism (SAM) and temporal attention mechanism (TAM) are suitable for dealing with the above multi-indicator and time series issues. This work incorporates SAM and TAM into the CNN-LSTM model to form 4 DL models for water quality prediction including CNN-LSTM, SAM-enhanced CNN-LSTM, TAM-enhanced CNN-LSTM, and the CNN-LSTM enhanced by both attention mechanisms. Four surface water online monitoring sites are used as case studies to examine the models in predicting three water quality indicators including dissolved oxygen (DO), ammonia nitrogen (NH3-N), and total organic carbon (TOC). According to the case results of the 4 models after training with similar training epochs, the prediction accuracies of attention-enhanced models are better than the CNN-LSTM model, and the model with both attention mechanisms generally achieves the best performance among the 4 models. The prediction NSE of DO by the four models are 0.817, 0.948, 0.952, and 0.967 respectively in a representative case Jiujiang. The results demonstrate that spatial and temporal attention can analyze correlations from multiple indicators and time series of water quality data respectively, to improve the accuracy of surface water quality prediction.
Keywords: CNN-LSTM; Spatial attention; Spatio-temporal attention; Surface water quality prediction; Temporal attention (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-024-03946-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:38:y:2024:i:15:d:10.1007_s11269-024-03946-1
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-024-03946-1
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().