Multi-Objective Optimization and Coordination of Power Generation, Ecological Needs, and Carbon Emissions in Reservoir Operation
Shiwei Yang,
Yuanqin Wei,
Junguang Chen,
Yuanming Wang,
Ruifeng Liang () and
Kefeng Li
Additional contact information
Shiwei Yang: Sichuan University
Yuanqin Wei: Changjiang Institute of Survey
Junguang Chen: Sichuan University
Yuanming Wang: Sichuan University
Ruifeng Liang: Sichuan University
Kefeng Li: Sichuan University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2024, vol. 38, issue 1, No 6, 123-136
Abstract:
Abstract With increasing emphasis on ecological environment conservation, the conservation of fish habitat and the regional carbon balance need to be incorporated into the operation process of reservoirs. In this research, formulas for calculating ecological and environmental objectives in reservoir operation were obtained by fitting the curve of discharge and fish habitat area and comprehensively analysing the factors affecting reservoir carbon emissions. Additionally, we used the multi-objective optimization algorithm NSGA-II-DE to study the competitive relationship between the economic, ecological, and environmental benefits of the Longtoushi Reservoir and proposed a relatively optimized operation scheme using the multi-objective decision-making method VIKOR. The results of this scheme showed that the power generation, weighted usable area (WUA) and carbon emissions of Longtoushi Reservoir during the study period were 5.74 × 108 kW h, 9.61 × 104 m2 and 51.32 t, respectively. Compared with the relative optimal operation scheme, the power generated by the maximum power generation scheme increased by 2.66%, the WUA decreased by 1.68%, and carbon emissions increased by 9.86%; the power generation of the maximum WUA scheme increased by 0.16%, the WUA decreased by 0.08%, and carbon emissions increased by 0.72%; and the power generation of the minimum carbon emission scheme increased by 3.14%, the WUA decreased by 1.62%, and the carbon emissions increased by 9.14%. In general, competition between power generation, WUA and carbon emissions is inevitable, and reducing the water level in reservoirs can effectively increase ecological and environmental benefits.
Keywords: Reservoir operation; Multi-objective optimization; Ecological benefit; Carbon emission; NSGA-II-DE (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-023-03657-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:38:y:2024:i:1:d:10.1007_s11269-023-03657-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-023-03657-z
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().