Monthly Runoff Prediction Via Mode Decomposition-Recombination Technique
Xi Yang,
Zhihe Chen () and
Min Qin
Additional contact information
Xi Yang: Sun Yat-sen University
Zhihe Chen: Sun Yat-sen University
Min Qin: Sun Yat-sen University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2024, vol. 38, issue 1, No 14, 269-286
Abstract:
Abstract Accurate prediction of monthly runoff is critical for optimal water resource allocation. However, previous studies mainly focused on the direct prediction of the decomposition sequence, ignoring the error accumulation and the increase in calculation time. In addition, the influence of each sequence on the prediction results was not clarified. Therefore, this study proposes a hybrid prediction method combining time varying filtering-based empirical mode decomposition (TVF-EMD), permutation entropy (PE), a long short-term memory model (LSTM) and a particle swarm algorithm (PSO). Firstly, TVF-EMD is applied for decomposing the original runoff sequences to obtain different components; secondly, PE is applied for characterizing the complexity of different components and reconstructing similar components to obtain new components; then, the decomposed-reconstructed runoff data are predicted by using the LSTM model with PSO based on the analytical studies of different watersheds. The outcomes indicate that the performance index of the proposed model is better than that of the comparison model, improving the prediction accuracy effectively. In addition, the impact of each subseries on prediction performance was also investigated in this study. These findings indicate that the developed model has potential application prospects in runoff prediction and can provide scientific support for water conservancy project operations.
Keywords: Monthly runoff prediction; Modal decomposition reorganization; Long short-term memory model; Particle swarm algorithm (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-023-03668-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:38:y:2024:i:1:d:10.1007_s11269-023-03668-w
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-023-03668-w
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().