EconPapers    
Economics at your fingertips  
 

Sustainable Groundwater Recharge Potential Zone Identification: An AHP-OWA Approach Integrating Future Rainfall and Land-Use Projections

Shweta Kodihal () and M. P. Akhtar ()
Additional contact information
Shweta Kodihal: Manipal University Jaipur
M. P. Akhtar: Manipal University Jaipur

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2024, vol. 38, issue 3, No 15, 1079-1098

Abstract: Abstract Groundwater depletion has recently become an issue of great concern, primarily due to its adverse impacts on urban sustainability. In the present study, sustainable groundwater recharge potential zones are identified using multi-criteria decision analysis for Jaipur in North-Western region of India. Jaipur is an important and populated metropolitan city located in the northwestern region of India. The city has drawn attention for the past decade as a water-stressed area owing to multiple climatic and anthropogenic factors. The study employs an approach to identify sustainable recharge potential zones, employing Ordered Weighted Averaging (OWA) along with Analytical Hierarchical Process (AHP). Weights are assigned to nine critical parameters, encompassing, projected rainfall, aquifer characteristics, lineament density, drainage density, soil type, slope and land-use projections. Notably, the focus on projected rainfall and land-use parameters adds a sustainable dimension to our investigation. The identified optimal Groundwater Recharge Potential Zone (GWRPZ) is further refined by superimposing stream order map, facilitating precise recharge well location. This technique proves invaluable for pinpointing optimal spots for groundwater recharge wells. The collaboration of AHP-OWA enriches the work, offering a nuanced understanding of groundwater dynamics and significantly improving decision making robustness. Thirteen specific locations have been identified as ideal sites for implementing groundwater recharge wells based on our findings. The study empowers policymakers and practitioners with a strategic tool. Implementing recharge wells in identified GWRPZ can replenish aquifers effectively. The study provides a tangible roadmap for effective and sustainable groundwater management practices.

Keywords: Groundwater recharge; Groundwater artificial recharge; Ordered weighted averaging; Recharge wells; Urban hydrology (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11269-023-03710-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:38:y:2024:i:3:d:10.1007_s11269-023-03710-x

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-023-03710-x

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:38:y:2024:i:3:d:10.1007_s11269-023-03710-x