A Multi-step Data Assimilation Framework to Investigate the Effect of Measurement Uncertainty in the Reduction of Water Distribution Network Model Errors
Ibrahim Miflal Fayaz (),
Mario Castro-Gama () and
Leonardo Alfonso ()
Additional contact information
Ibrahim Miflal Fayaz: IHE Delft
Mario Castro-Gama: IHE Delft
Leonardo Alfonso: IHE Delft
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2024, vol. 38, issue 9, No 6, 3197-3214
Abstract:
Abstract Water distribution network (WDN) models are a common decision support tool for understanding the behavior and performance of WDNs, aiding in the planning and management of WDN systems. The increasing availability of real-time data has recently promoted the exploration of Data Assimilation (DA) techniques to improve these models. However, flow, pressure and demand data are uncertain, particularly due to sensor characteristics such as precision and noise. An open question is to what extent DA can still improve hydraulic models when the data used to this end is uncertain. This paper proposes a three-step Ensemble Kalman Filter based DA approach for WDNs (3-EnKF-WDN), building on previous approaches, and advancing in two main fronts: the use of extended period simulation, and the use of pressure-dependent demand (PDD) analysis. Different scenarios considering uncertain sensor data, with varied precision and noise, are applied to two networks of different sizes, representative of real-world WDNs. The computational demand of the 3-EnKF-WDN method is also assessed. Results show that increasing sensor’s precision and decreasing the noise in state measurements reduce model error, as expected. However, we also found that model errors: 1) are reduced more effectively by using 3-EnKF-WDN than by increasing sensors’ precision; 2) are not reduced if certain noise thresholds are surpassed; 3) can be reduced without assimilating demand data if the WDNs are fully monitored with head sensors in all the nodes and flow sensors in all the links.
Keywords: Water distribution networks; Data assimilation; 3-EnKF-WDN; Ensemble kalman filter; Measurement uncertainty; Computational demand (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-024-03809-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:38:y:2024:i:9:d:10.1007_s11269-024-03809-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-024-03809-9
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().